mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import gc
 | |
| from typing import List, Optional
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.engine.request import Request
 | |
| from fastdeploy.utils import get_logger
 | |
| from fastdeploy.worker.output import ModelRunnerOutput
 | |
| from fastdeploy.worker.worker_base import WorkerBase
 | |
| from fastdeploy.worker.xpu_model_runner import XPUModelRunner
 | |
| 
 | |
| logger = get_logger("xpu_worker", "xpu_worker.log")
 | |
| 
 | |
| 
 | |
| class XpuWorker(WorkerBase):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         local_rank: int,
 | |
|         rank: int,
 | |
|     ):
 | |
|         super().__init__(
 | |
|             fd_config=fd_config,
 | |
|             local_rank=local_rank,
 | |
|             rank=rank,
 | |
|         )
 | |
|         pass
 | |
| 
 | |
|     def init_device(self):
 | |
|         """Initialize device and Construct model runner"""
 | |
|         if paddle.is_compiled_with_xpu():
 | |
|             # Set evironment variable
 | |
|             self.device = f"xpu:{self.local_rank}"
 | |
|             paddle.device.set_device(self.device)
 | |
|             paddle.set_default_dtype(self.parallel_config.dtype)
 | |
|             self.device_ids = self.parallel_config.device_ids.split(",")
 | |
| 
 | |
|             gc.collect()
 | |
|         else:
 | |
|             raise RuntimeError(f"Not support device type: {self.device_config.device}")
 | |
| 
 | |
|         # Construct model runner
 | |
|         self.model_runner: XPUModelRunner = XPUModelRunner(
 | |
|             fd_config=self.fd_config,
 | |
|             device=self.device,
 | |
|             rank=self.rank,
 | |
|             local_rank=self.local_rank,
 | |
|         )
 | |
| 
 | |
|     def graph_optimize_and_warm_up_model(self) -> None:
 | |
|         """
 | |
|         Optimizes the inference graph using the specified optimization options.
 | |
|         """
 | |
|         logger.warn("XPU current could not graph optimize and warm up model")
 | |
| 
 | |
|     def determine_available_memory(self) -> int:
 | |
|         """
 | |
|         Profiles the peak memory usage of the model to determine how much
 | |
|         memory can be used for KV cache without OOMs.
 | |
| 
 | |
|         The engine will first conduct a profiling of the existing memory usage.
 | |
|         Then, it calculate the maximum possible number of GPU and CPU blocks
 | |
|         that can be allocated with the remaining free memory.
 | |
| 
 | |
|         Tip:
 | |
|             You may limit the usage of GPU memory
 | |
|             by adjusting the `gpu_memory_utilization` parameter.
 | |
|         """
 | |
|         from fastdeploy.model_executor.ops.xpu import (
 | |
|             xpu_get_free_global_memory,
 | |
|             xpu_get_total_global_memory,
 | |
|             xpu_get_used_global_memory,
 | |
|         )
 | |
| 
 | |
|         total_memory = xpu_get_total_global_memory(self.local_rank)
 | |
|         used_memory = xpu_get_used_global_memory(self.local_rank)
 | |
|         free_memory = xpu_get_free_global_memory(self.local_rank)
 | |
| 
 | |
|         logger.info(
 | |
|             f"Before warm up, total_memory: {total_memory}, \
 | |
|                     used_memory: {used_memory}, free_memory: {free_memory}"
 | |
|         )
 | |
| 
 | |
|         self.model_runner.prepare_profile()
 | |
|         self.model_runner.profile_run()
 | |
| 
 | |
|         total_available_memory = int(total_memory * self.parallel_config.gpu_memory_utilization)
 | |
|         used_memory = xpu_get_used_global_memory(self.local_rank)
 | |
|         available_kv_cache_memory = total_available_memory - used_memory
 | |
|         model_block_memory_used = self.cal_theortical_kvcache()
 | |
|         available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
 | |
| 
 | |
|         self.model_runner.clear_block_table()
 | |
| 
 | |
|         logger.info(
 | |
|             f"After warm up, total_available_memory: {total_available_memory}, \
 | |
|                     used_memory: {used_memory}, available_kv_cache_memory: {available_kv_cache_memory}"
 | |
|         )
 | |
|         paddle.device.xpu.empty_cache()
 | |
|         return available_kv_cache_memory  # approximate value
 | |
| 
 | |
|     def cal_theortical_kvcache(self) -> int:
 | |
|         """ """
 | |
|         return self.model_runner.cal_theortical_kvcache()
 | |
| 
 | |
|     def load_model(self) -> None:
 | |
|         """ """
 | |
|         self.model_runner.load_model()
 | |
| 
 | |
|     def get_model(self) -> nn.Layer:
 | |
|         """ """
 | |
|         return self.model_runner.get_model()
 | |
| 
 | |
|     def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None:
 | |
|         """ """
 | |
|         pass
 | |
| 
 | |
|     def execute_model(
 | |
|         self,
 | |
|         model_forward_batch: Optional[List[Request]] = None,
 | |
|     ) -> Optional[ModelRunnerOutput]:
 | |
|         """ """
 | |
|         output = self.model_runner.execute_model(model_forward_batch)
 | |
|         return output
 | |
| 
 | |
|     def prefill_finished(self):
 | |
|         """
 | |
|         check whether prefill stage finished
 | |
|         """
 | |
|         return self.model_runner.prefill_finished()
 | |
| 
 | |
|     def preprocess_new_task(self, req_dicts: List[Request]) -> None:
 | |
|         """Process new requests and then start the decode loop
 | |
|         TODO(gongshaotian):The scheduler should schedule the handling of prefill,
 | |
|         and workers and modelrunners should not perceive it.
 | |
|         """
 | |
|         self.model_runner.process_prefill_inputs(req_dicts=req_dicts)
 | |
| 
 | |
|     def check_health(self) -> bool:
 | |
|         """ """
 | |
|         return True
 | |
| 
 | |
|     def reinitialize_kv_cache(self, num_gpu_blocks: int) -> None:
 | |
|         """ """
 | |
|         self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
 | 
