mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
121 lines
4.4 KiB
C++
121 lines
4.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/function/sort.h"
|
|
#include "fastdeploy/function/eigen.h"
|
|
#include "fastdeploy/function/transpose.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
template <typename T, typename Type>
|
|
static void FullSort(Type input_height, Type input_width, int input_dim,
|
|
const FDTensor* input, FDTensor* out, FDTensor* indices,
|
|
bool descending) {
|
|
out->Allocate(input->Shape(), input->Dtype());
|
|
indices->Allocate(input->Shape(), TypeToDataType<Type>::dtype);
|
|
|
|
T* t_out = reinterpret_cast<T*>(out->Data());
|
|
Type* t_indices = reinterpret_cast<Type*>(indices->Data());
|
|
|
|
for (Type i = 0; i < input_height; ++i) {
|
|
std::vector<std::pair<T, Type>> col_vec;
|
|
col_vec.reserve(input_width);
|
|
if (input_dim == 1) {
|
|
auto e_input = EigenVector<T>::Flatten(*input);
|
|
for (Type j = 0; j < input_width; ++j) {
|
|
col_vec.push_back(std::pair<T, Type>(e_input(j), j));
|
|
}
|
|
} else {
|
|
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
|
|
for (Type j = 0; j < input_width; ++j) {
|
|
col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
|
|
}
|
|
}
|
|
std::sort(col_vec.begin(), col_vec.end(),
|
|
[&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
|
|
if (descending)
|
|
return (std::isnan(static_cast<double>(l.first)) &&
|
|
!std::isnan(static_cast<double>(r.first))) ||
|
|
(l.first > r.first);
|
|
else
|
|
return (!std::isnan(static_cast<double>(l.first)) &&
|
|
std::isnan(static_cast<double>(r.first))) ||
|
|
(l.first < r.first);
|
|
});
|
|
|
|
for (Type j = 0; j < input_width; ++j) {
|
|
t_out[i * input_width + j] = col_vec[j].first;
|
|
t_indices[i * input_width + j] = col_vec[j].second;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void SortKernel(const FDTensor& x, FDTensor* out, FDTensor* indices,
|
|
FDDataType indices_type, bool descending, int axis) {
|
|
auto input_shape = x.Shape();
|
|
int rank = input_shape.size();
|
|
axis = (axis < 0) ? (rank + axis) : axis;
|
|
// Do full sort
|
|
if (axis == -1 || axis + 1 == rank) {
|
|
int64_t numel = x.Numel();
|
|
int64_t input_width = input_shape[axis];
|
|
int64_t input_height = numel / input_width;
|
|
FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
|
|
FullSort<T, data_t>(input_height, input_width, rank,
|
|
&x, out, indices, descending);
|
|
}));
|
|
} else {
|
|
// If not full sort do transpose
|
|
std::vector<int64_t> trans;
|
|
for (int i = 0; i < axis; i++) {
|
|
trans.push_back(i);
|
|
}
|
|
trans.push_back(rank - 1);
|
|
for (int i = axis + 1; i < rank - 1; i++) {
|
|
trans.push_back(i);
|
|
}
|
|
trans.push_back(axis);
|
|
|
|
FDTensor trans_inp;
|
|
Transpose(x, &trans_inp, trans);
|
|
int64_t numel = x.Numel();
|
|
int64_t input_width = input_shape[axis];
|
|
int64_t input_height = numel / input_width;
|
|
FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
|
|
FullSort<T, data_t>(input_height, input_width, rank,
|
|
&trans_inp, out, indices,
|
|
descending);
|
|
}));
|
|
// transpose back
|
|
Transpose(*out, out, trans);
|
|
Transpose(*indices, indices, trans);
|
|
}
|
|
}
|
|
|
|
void Sort(const FDTensor& x, FDTensor* out, FDTensor* indices, int axis,
|
|
bool descending, FDDataType indices_type) {
|
|
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "SortKernel", ([&] {
|
|
SortKernel<data_t>(x, out, indices, indices_type,
|
|
descending, axis);
|
|
}));
|
|
}
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|