mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* avoid mem copy for cpp benchmark * set CMAKE_BUILD_TYPE to Release * Add SegmentationDiff * change pointer to reference * fixed bug * cast uint8 to int32
71 lines
2.9 KiB
C++
Executable File
71 lines
2.9 KiB
C++
Executable File
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
namespace vision = fastdeploy::vision;
|
|
namespace benchmark = fastdeploy::benchmark;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
auto model_file = FLAGS_model + sep + "model.pdmodel";
|
|
auto params_file = FLAGS_model + sep + "model.pdiparams";
|
|
auto config_file = FLAGS_model + sep + "deploy.yaml";
|
|
if (FLAGS_backend == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
|
|
option.trt_option.SetShape("x", {1, 3, 192, 192}, {1, 3, 192, 192},
|
|
{1, 3, 192, 192});
|
|
}
|
|
auto model_ppseg = vision::segmentation::PaddleSegModel(
|
|
model_file, params_file, config_file, option);
|
|
vision::SegmentationResult res;
|
|
// Run once at least
|
|
model_ppseg.Predict(im, &res);
|
|
// 1. Test result diff
|
|
std::cout << "=============== Test result diff =================\n";
|
|
// Save result to -> disk.
|
|
std::string seg_result_path = "ppseg_result.txt";
|
|
benchmark::ResultManager::SaveSegmentationResult(res, seg_result_path);
|
|
// Load result from <- disk.
|
|
vision::SegmentationResult res_loaded;
|
|
benchmark::ResultManager::LoadSegmentationResult(&res_loaded,
|
|
seg_result_path);
|
|
// Calculate diff between two results.
|
|
auto seg_diff =
|
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
|
std::cout << "Labels diff: mean=" << seg_diff.labels.mean
|
|
<< ", max=" << seg_diff.labels.max
|
|
<< ", min=" << seg_diff.labels.min << std::endl;
|
|
if (res_loaded.contain_score_map) {
|
|
std::cout << "Scores diff: mean=" << seg_diff.scores.mean
|
|
<< ", max=" << seg_diff.scores.max
|
|
<< ", min=" << seg_diff.scores.min << std::endl;
|
|
}
|
|
BENCHMARK_MODEL(model_ppseg, model_ppseg.Predict(im, &res))
|
|
auto vis_im = vision::VisSegmentation(im, res, 0.5);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
#endif
|
|
return 0;
|
|
} |