mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme * add cpp benchmark * add cpu and gpu mem * public part split * add runtime mode * fixed bugs * add cpu_thread_nums * deal with comments * deal with comments * deal with comments * rm useless code * add FASTDEPLOY_DECL * add FASTDEPLOY_DECL * fixed for windows * mv rss to pss * mv rss to pss * Update utils.cc * use thread to collect mem * Add ResourceUsageMonitor * rm useless code * fixed bug * fixed typo * update ResourceUsageMonitor * fixed bug * fixed bug * add note for ResourceUsageMonitor * deal with comments * add macros * deal with comments * deal with comments * deal with comments * re-lint * rm pmap and use mem api * rm pmap and use mem api * add mem api * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * deal with comments * fixed enable_paddle_to_trt * add log for paddle_trt * support ppcls benchmark * use new trt option api * update benchmark info * simplify benchmark.cc * simplify benchmark.cc * deal with comments * Add ppseg && ppocr benchmark * add OCR rec img * add ocr benchmark * fixed trt shape * add trt shape * resolve conflict * add ENABLE_BENCHMARK define * Add ClassifyDiff * Add Resize for ClassifyResult * deal with comments * add convert info script * resolve conflict * Add SaveBenchmarkResult func * fixed bug * fixed bug * fixed bug --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
63 lines
2.5 KiB
C++
Executable File
63 lines
2.5 KiB
C++
Executable File
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
namespace vision = fastdeploy::vision;
|
|
namespace benchmark = fastdeploy::benchmark;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
// Detection Model
|
|
auto det_model_file = FLAGS_model + sep + "inference.pdmodel";
|
|
auto det_params_file = FLAGS_model + sep + "inference.pdiparams";
|
|
if (FLAGS_backend == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
|
|
option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
|
|
{1, 3, 960, 960});
|
|
}
|
|
auto model_ppocr_det =
|
|
vision::ocr::DBDetector(det_model_file, det_params_file, option);
|
|
std::vector<std::array<int, 8>> res;
|
|
// Run once at least
|
|
model_ppocr_det.Predict(im, &res);
|
|
// 1. Test result diff
|
|
std::cout << "=============== Test result diff =================\n";
|
|
// Save result to -> disk.
|
|
std::string ppocr_det_result_path = "ppocr_det_result.txt";
|
|
benchmark::ResultManager::SaveOCRDetResult(res, ppocr_det_result_path);
|
|
// Load result from <- disk.
|
|
std::vector<std::array<int, 8>> res_loaded;
|
|
benchmark::ResultManager::LoadOCRDetResult(&res_loaded,
|
|
ppocr_det_result_path);
|
|
// Calculate diff between two results.
|
|
auto ppocr_det_diff =
|
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
|
std::cout << "PPOCR Boxes diff: mean=" << ppocr_det_diff.boxes.mean
|
|
<< ", max=" << ppocr_det_diff.boxes.max
|
|
<< ", min=" << ppocr_det_diff.boxes.min << std::endl;
|
|
BENCHMARK_MODEL(model_ppocr_det, model_ppocr_det.Predict(im, &res));
|
|
#endif
|
|
return 0;
|
|
} |