Files
FastDeploy/tests/release_task/infer_ppyoloe.py
2022-11-28 22:01:51 +08:00

81 lines
2.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
required=True,
help="Path of PaddleDetection model directory")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
nargs='?',
type=str,
default='default',
help="Set inference backend, support one of ['default', 'ort', 'paddle', 'trt', 'openvino']."
)
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.backend == "ort":
option.use_ort_backend()
elif args.backend == "paddle":
option.use_paddle_backend()
elif args.backend == "trt":
assert args.device.lower(
) == "gpu", "Set trt backend must use gpu for inference"
option.use_trt_backend()
option.set_trt_input_shape("image", [1, 3, 640, 640])
option.set_trt_input_shape("scale_factor", [1, 2])
elif args.backend == 'openvino':
assert args.device.lower(
) == "cpu", "Set openvino backend must use cpu for inference"
option.use_openvino_backend()
elif args.backend == "default":
pass
else:
raise Exception(
"Don't support backend type: {}, please use one of ['default', 'ort', 'paddle', 'trt'].".
format(args.backend))
return option
args = parse_arguments()
model_file = os.path.join(args.model_dir, "model.pdmodel")
params_file = os.path.join(args.model_dir, "model.pdiparams")
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.detection.PPYOLOE(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
for i in range(10):
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")