mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
118 lines
4.8 KiB
Python
Executable File
118 lines
4.8 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
print(fd.__path__)
|
|
import cv2
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
import runtime_config as rc
|
|
|
|
|
|
def test_detection_yolox():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ppyolox_baseline.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url, "resources")
|
|
model_path = "resources/yolox_s_300e_coco"
|
|
|
|
model_file = os.path.join(model_path, "model.pdmodel")
|
|
params_file = os.path.join(model_path, "model.pdiparams")
|
|
config_file = os.path.join(model_path, "infer_cfg.yml")
|
|
rc.test_option.use_ort_backend()
|
|
model = fd.vision.detection.PaddleYOLOX(
|
|
model_file, params_file, config_file, runtime_option=rc.test_option)
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
for i in range(2):
|
|
result = model.predict(im1)
|
|
with open("resources/ppyolox_baseline.pkl", "rb") as f:
|
|
boxes, scores, label_ids = pickle.load(f)
|
|
pred_boxes = np.array(result.boxes)
|
|
pred_scores = np.array(result.scores)
|
|
pred_label_ids = np.array(result.label_ids)
|
|
|
|
diff_boxes = np.fabs(boxes - pred_boxes)
|
|
diff_scores = np.fabs(scores - pred_scores)
|
|
diff_label_ids = np.fabs(label_ids - pred_label_ids)
|
|
|
|
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
|
|
|
|
score_threshold = 0.1
|
|
assert diff_boxes[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in boxes."
|
|
assert diff_scores[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in scores."
|
|
assert diff_label_ids[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in label_ids."
|
|
|
|
|
|
# result = model.predict(im1)
|
|
# with open("ppyolox_baseline.pkl", "wb") as f:
|
|
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
|
|
|
|
def test_detection_yolox_1():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ppyolox_baseline.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url, "resources")
|
|
model_path = "resources/yolox_s_300e_coco"
|
|
|
|
model_file = os.path.join(model_path, "model.pdmodel")
|
|
params_file = os.path.join(model_path, "model.pdiparams")
|
|
config_file = os.path.join(model_path, "infer_cfg.yml")
|
|
|
|
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
|
|
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
|
|
|
|
rc.test_option.set_model_path(model_file, params_file)
|
|
runtime = fd.Runtime(rc.test_option);
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
for i in range(3):
|
|
input_tensors = preprocessor.run([im1])
|
|
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1]})
|
|
results = postprocessor.run(output_tensors)
|
|
result = results[0]
|
|
with open("resources/ppyolox_baseline.pkl", "rb") as f:
|
|
boxes, scores, label_ids = pickle.load(f)
|
|
pred_boxes = np.array(result.boxes)
|
|
pred_scores = np.array(result.scores)
|
|
pred_label_ids = np.array(result.label_ids)
|
|
|
|
diff_boxes = np.fabs(boxes - pred_boxes)
|
|
diff_scores = np.fabs(scores - pred_scores)
|
|
diff_label_ids = np.fabs(label_ids - pred_label_ids)
|
|
|
|
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
|
|
|
|
score_threshold = 0.0
|
|
assert diff_boxes[scores > score_threshold].max(
|
|
) < 1e-01, "There's diff in boxes."
|
|
assert diff_scores[scores > score_threshold].max(
|
|
) < 1e-02, "There's diff in scores."
|
|
assert diff_label_ids[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in label_ids."
|
|
|
|
if __name__ == "__main__":
|
|
test_detection_yolox()
|
|
test_detection_yolox_1()
|