Files
FastDeploy/fastdeploy/vision/tracking/pptracking/tracker.cc
ChaoII ba501fd963 [Model] add pptracking model (#357)
* add override mark

* delete some

* recovery

* recovery

* add tracking

* add tracking py_bind and example

* add pptracking

* add pptracking

* iomanip head file

* add opencv_video lib

* add python libs package

Signed-off-by: ChaoII <849453582@qq.com>

* complete comments

Signed-off-by: ChaoII <849453582@qq.com>

* add jdeTracker_ member variable

Signed-off-by: ChaoII <849453582@qq.com>

* add 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* remove kwargs params

Signed-off-by: ChaoII <849453582@qq.com>

* [Doc]update pptracking docs

* delete 'ENABLE_PADDLE_FRONTEND' switch

* add pptracking unit test

* update pptracking unit test

Signed-off-by: ChaoII <849453582@qq.com>

* modify test video file path and remove trt test

* update unit test model url

* remove 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* fix build python packages about pptracking on win32

Signed-off-by: ChaoII <849453582@qq.com>

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-26 14:27:55 +08:00

306 lines
9.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The code is based on:
// https://github.com/CnybTseng/JDE/blob/master/platforms/common/jdetracker.cpp
// Ths copyright of CnybTseng/JDE is as follows:
// MIT License
#include <limits.h>
#include <stdio.h>
#include <algorithm>
#include <map>
#include "fastdeploy/vision/tracking/pptracking/lapjv.h"
#include "fastdeploy/vision/tracking/pptracking/tracker.h"
#define mat2vec4f(m) \
cv::Vec4f(*m.ptr<float>(0, 0), \
*m.ptr<float>(0, 1), \
*m.ptr<float>(0, 2), \
*m.ptr<float>(0, 3))
namespace fastdeploy {
namespace vision {
namespace tracking {
static std::map<int, float> chi2inv95 = {{1, 3.841459f},
{2, 5.991465f},
{3, 7.814728f},
{4, 9.487729f},
{5, 11.070498f},
{6, 12.591587f},
{7, 14.067140f},
{8, 15.507313f},
{9, 16.918978f}};
JDETracker::JDETracker()
: timestamp(0), max_lost_time(30), lambda(0.98f), det_thresh(0.3f) {}
bool JDETracker::update(const cv::Mat &dets,
const cv::Mat &emb,
std::vector<Track> *tracks) {
++timestamp;
TrajectoryPool candidates(dets.rows);
for (int i = 0; i < dets.rows; ++i) {
float score = *dets.ptr<float>(i, 1);
const cv::Mat &ltrb_ = dets(cv::Rect(2, i, 4, 1));
cv::Vec4f ltrb = mat2vec4f(ltrb_);
const cv::Mat &embedding = emb(cv::Rect(0, i, emb.cols, 1));
candidates[i] = Trajectory(ltrb, score, embedding);
}
TrajectoryPtrPool tracked_trajectories;
TrajectoryPtrPool unconfirmed_trajectories;
for (size_t i = 0; i < this->tracked_trajectories.size(); ++i) {
if (this->tracked_trajectories[i].is_activated)
tracked_trajectories.push_back(&this->tracked_trajectories[i]);
else
unconfirmed_trajectories.push_back(&this->tracked_trajectories[i]);
}
TrajectoryPtrPool trajectory_pool =
tracked_trajectories + &(this->lost_trajectories);
for (size_t i = 0; i < trajectory_pool.size(); ++i)
trajectory_pool[i]->predict();
Match matches;
std::vector<int> mismatch_row;
std::vector<int> mismatch_col;
cv::Mat cost = motion_distance(trajectory_pool, candidates);
linear_assignment(cost, 0.7f, &matches, &mismatch_row, &mismatch_col);
MatchIterator miter;
TrajectoryPtrPool activated_trajectories;
TrajectoryPtrPool retrieved_trajectories;
for (miter = matches.begin(); miter != matches.end(); miter++) {
Trajectory *pt = trajectory_pool[miter->first];
Trajectory &ct = candidates[miter->second];
if (pt->state == Tracked) {
pt->update(&ct, timestamp);
activated_trajectories.push_back(pt);
} else {
pt->reactivate(&ct, count,timestamp);
retrieved_trajectories.push_back(pt);
}
}
TrajectoryPtrPool next_candidates(mismatch_col.size());
for (size_t i = 0; i < mismatch_col.size(); ++i)
next_candidates[i] = &candidates[mismatch_col[i]];
TrajectoryPtrPool next_trajectory_pool;
for (size_t i = 0; i < mismatch_row.size(); ++i) {
int j = mismatch_row[i];
if (trajectory_pool[j]->state == Tracked)
next_trajectory_pool.push_back(trajectory_pool[j]);
}
cost = iou_distance(next_trajectory_pool, next_candidates);
linear_assignment(cost, 0.5f, &matches, &mismatch_row, &mismatch_col);
for (miter = matches.begin(); miter != matches.end(); miter++) {
Trajectory *pt = next_trajectory_pool[miter->first];
Trajectory *ct = next_candidates[miter->second];
if (pt->state == Tracked) {
pt->update(ct, timestamp);
activated_trajectories.push_back(pt);
} else {
pt->reactivate(ct,count, timestamp);
retrieved_trajectories.push_back(pt);
}
}
TrajectoryPtrPool lost_trajectories;
for (size_t i = 0; i < mismatch_row.size(); ++i) {
Trajectory *pt = next_trajectory_pool[mismatch_row[i]];
if (pt->state != Lost) {
pt->mark_lost();
lost_trajectories.push_back(pt);
}
}
TrajectoryPtrPool nnext_candidates(mismatch_col.size());
for (size_t i = 0; i < mismatch_col.size(); ++i)
nnext_candidates[i] = next_candidates[mismatch_col[i]];
cost = iou_distance(unconfirmed_trajectories, nnext_candidates);
linear_assignment(cost, 0.7f, &matches, &mismatch_row, &mismatch_col);
for (miter = matches.begin(); miter != matches.end(); miter++) {
unconfirmed_trajectories[miter->first]->update(
nnext_candidates[miter->second], timestamp);
activated_trajectories.push_back(unconfirmed_trajectories[miter->first]);
}
TrajectoryPtrPool removed_trajectories;
for (size_t i = 0; i < mismatch_row.size(); ++i) {
unconfirmed_trajectories[mismatch_row[i]]->mark_removed();
removed_trajectories.push_back(unconfirmed_trajectories[mismatch_row[i]]);
}
for (size_t i = 0; i < mismatch_col.size(); ++i) {
if (nnext_candidates[mismatch_col[i]]->score < det_thresh) continue;
nnext_candidates[mismatch_col[i]]->activate(count, timestamp);
activated_trajectories.push_back(nnext_candidates[mismatch_col[i]]);
}
for (size_t i = 0; i < this->lost_trajectories.size(); ++i) {
Trajectory &lt = this->lost_trajectories[i];
if (timestamp - lt.timestamp > max_lost_time) {
lt.mark_removed();
removed_trajectories.push_back(&lt);
}
}
TrajectoryPoolIterator piter;
for (piter = this->tracked_trajectories.begin();
piter != this->tracked_trajectories.end();) {
if (piter->state != Tracked)
piter = this->tracked_trajectories.erase(piter);
else
++piter;
}
this->tracked_trajectories += activated_trajectories;
this->tracked_trajectories += retrieved_trajectories;
this->lost_trajectories -= this->tracked_trajectories;
this->lost_trajectories += lost_trajectories;
this->lost_trajectories -= this->removed_trajectories;
this->removed_trajectories += removed_trajectories;
remove_duplicate_trajectory(&this->tracked_trajectories,
&this->lost_trajectories);
tracks->clear();
for (size_t i = 0; i < this->tracked_trajectories.size(); ++i) {
if (this->tracked_trajectories[i].is_activated) {
Track track = {this->tracked_trajectories[i].id,
this->tracked_trajectories[i].score,
this->tracked_trajectories[i].ltrb};
tracks->push_back(track);
}
}
return 0;
}
cv::Mat JDETracker::motion_distance(const TrajectoryPtrPool &a,
const TrajectoryPool &b) {
if (0 == a.size() || 0 == b.size())
return cv::Mat(a.size(), b.size(), CV_32F);
cv::Mat edists = embedding_distance(a, b);
cv::Mat mdists = mahalanobis_distance(a, b);
cv::Mat fdists = lambda * edists + (1 - lambda) * mdists;
const float gate_thresh = chi2inv95[4];
for (int i = 0; i < fdists.rows; ++i) {
for (int j = 0; j < fdists.cols; ++j) {
if (*mdists.ptr<float>(i, j) > gate_thresh)
*fdists.ptr<float>(i, j) = FLT_MAX;
}
}
return fdists;
}
void JDETracker::linear_assignment(const cv::Mat &cost,
float cost_limit,
Match *matches,
std::vector<int> *mismatch_row,
std::vector<int> *mismatch_col) {
matches->clear();
mismatch_row->clear();
mismatch_col->clear();
if (cost.empty()) {
for (int i = 0; i < cost.rows; ++i) mismatch_row->push_back(i);
for (int i = 0; i < cost.cols; ++i) mismatch_col->push_back(i);
return;
}
float opt = 0;
cv::Mat x(cost.rows, 1, CV_32S);
cv::Mat y(cost.cols, 1, CV_32S);
lapjv_internal(cost,
true,
cost_limit,
reinterpret_cast<int *>(x.data),
reinterpret_cast<int *>(y.data));
for (int i = 0; i < x.rows; ++i) {
int j = *x.ptr<int>(i);
if (j >= 0)
matches->insert({i, j});
else
mismatch_row->push_back(i);
}
for (int i = 0; i < y.rows; ++i) {
int j = *y.ptr<int>(i);
if (j < 0) mismatch_col->push_back(i);
}
return;
}
void JDETracker::remove_duplicate_trajectory(TrajectoryPool *a,
TrajectoryPool *b,
float iou_thresh) {
if (a->size() == 0 || b->size() == 0) return;
cv::Mat dist = iou_distance(*a, *b);
cv::Mat mask = dist < iou_thresh;
std::vector<cv::Point> idx;
cv::findNonZero(mask, idx);
std::vector<int> da;
std::vector<int> db;
for (size_t i = 0; i < idx.size(); ++i) {
int ta = (*a)[idx[i].y].timestamp - (*a)[idx[i].y].starttime;
int tb = (*b)[idx[i].x].timestamp - (*b)[idx[i].x].starttime;
if (ta > tb)
db.push_back(idx[i].x);
else
da.push_back(idx[i].y);
}
int id = 0;
TrajectoryPoolIterator piter;
for (piter = a->begin(); piter != a->end();) {
std::vector<int>::iterator iter = find(da.begin(), da.end(), id++);
if (iter != da.end())
piter = a->erase(piter);
else
++piter;
}
id = 0;
for (piter = b->begin(); piter != b->end();) {
std::vector<int>::iterator iter = find(db.begin(), db.end(), id++);
if (iter != db.end())
piter = b->erase(piter);
else
++piter;
}
}
} // namespace tracking
} // namespace vision
} // namespace fastdeploy