mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add override mark * delete some * recovery * recovery * add tracking * add tracking py_bind and example * add pptracking * add pptracking * iomanip head file * add opencv_video lib * add python libs package Signed-off-by: ChaoII <849453582@qq.com> * complete comments Signed-off-by: ChaoII <849453582@qq.com> * add jdeTracker_ member variable Signed-off-by: ChaoII <849453582@qq.com> * add 'FASTDEPLOY_DECL' macro Signed-off-by: ChaoII <849453582@qq.com> * remove kwargs params Signed-off-by: ChaoII <849453582@qq.com> * [Doc]update pptracking docs * delete 'ENABLE_PADDLE_FRONTEND' switch * add pptracking unit test * update pptracking unit test Signed-off-by: ChaoII <849453582@qq.com> * modify test video file path and remove trt test * update unit test model url * remove 'FASTDEPLOY_DECL' macro Signed-off-by: ChaoII <849453582@qq.com> * fix build python packages about pptracking on win32 Signed-off-by: ChaoII <849453582@qq.com> * update comment Signed-off-by: ChaoII <849453582@qq.com> * add pptracking model explain Signed-off-by: ChaoII <849453582@qq.com> * add tracking trail on vis_mot * add tracking trail * modify code for some suggestion * remove unused import * fix import bug Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
100 lines
3.6 KiB
C++
Executable File
100 lines
3.6 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <map>
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
#include "fastdeploy/vision/tracking/pptracking/tracker.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace tracking {
|
|
struct TrailRecorder{
|
|
std::map<int, std::vector<std::array<int, 2>>> records;
|
|
void Add(int id, const std::array<int, 2>& record);
|
|
};
|
|
|
|
inline void TrailRecorder::Add(int id, const std::array<int, 2>& record) {
|
|
auto iter = records.find(id);
|
|
if (iter != records.end()) {
|
|
auto trail = records[id];
|
|
trail.push_back(record);
|
|
records[id] = trail;
|
|
} else {
|
|
records[id] = {record};
|
|
}
|
|
}
|
|
|
|
class FASTDEPLOY_DECL PPTracking: public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g pptracking/model.pdmodel
|
|
* \param[in] params_file Path of parameter file, e.g pptracking/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] config_file Path of configuration file for deployment, e.g pptracking/infer_cfg.yml
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
|
*/
|
|
PPTracking(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/// Get model's name
|
|
std::string ModelName() const override { return "pptracking"; }
|
|
|
|
/** \brief Predict the detection result for an input image(consecutive)
|
|
*
|
|
* \param[in] im The input image data which is consecutive frame, comes from imread() or videoCapture.read()
|
|
* \param[in] result The output tracking result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(cv::Mat* img, MOTResult* result);
|
|
/** \brief bind tracking trail struct
|
|
*
|
|
* \param[in] recorder The MOT trail will record the trail of object
|
|
*/
|
|
void BindRecorder(TrailRecorder* recorder);
|
|
/** \brief cancel binding and clear trail information
|
|
*/
|
|
void UnbindRecorder();
|
|
|
|
private:
|
|
bool BuildPreprocessPipelineFromConfig();
|
|
|
|
bool Initialize();
|
|
|
|
bool Preprocess(Mat* img, std::vector<FDTensor>* outputs);
|
|
|
|
bool Postprocess(std::vector<FDTensor>& infer_result, MOTResult *result);
|
|
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
std::string config_file_;
|
|
float draw_threshold_;
|
|
float conf_thresh_;
|
|
float tracked_thresh_;
|
|
float min_box_area_;
|
|
bool is_record_trail_ = false;
|
|
std::unique_ptr<JDETracker> jdeTracker_;
|
|
TrailRecorder *recorder_ = nullptr;
|
|
};
|
|
|
|
} // namespace tracking
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|