Files
FastDeploy/fastdeploy/vision/ocr/ppocr/dbdetector.h
huangjianhui 6c4a08e416 [Other] PPOCR models support model clone function (#1072)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

* Create README_CN.md

* Rename README_CN.md to README.md

* Update README.md

* Update README.md

* Update VERSION_NUMBER

* Update requirements.txt

* Update README.md

* update version in doc:

* [Serving]Update Dockerfile (#1037)

Update Dockerfile

* Add license notice for RVM onnx model file (#1060)

* [Model] Add GPL-3.0 license (#1065)

Add GPL-3.0 license

* PPOCR model support model clone

* Update README.md

* Update PPOCRv2 && PPOCRv3 clone code

* Update PPOCR python __init__

* Add multi thread ocr example code

* Update README.md

* Update README.md

* Update ResNet50_vd_infer multi process code

* Add PPOCR multi process && thread example

* Update README.md

* Update README.md

* Update multi-thread docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
Co-authored-by: heliqi <1101791222@qq.com>
Co-authored-by: WJJ1995 <wjjisloser@163.com>
2023-01-17 15:16:41 +08:00

93 lines
3.8 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/vision/ocr/ppocr/det_postprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/det_preprocessor.h"
#include "fastdeploy/utils/unique_ptr.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL DBDetector : public FastDeployModel {
public:
DBDetector();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
DBDetector(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/** \brief Clone a new DBDetector with less memory usage when multiple instances of the same model are created
*
* \return new DBDetector* type unique pointer
*/
virtual std::unique_ptr<DBDetector> Clone() const;
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_det"; }
/** \brief Predict the input image and get OCR detection model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] boxes_result The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(const cv::Mat& img,
std::vector<std::array<int, 8>>* boxes_result);
/** \brief BatchPredict the input image and get OCR detection model result.
*
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] det_results The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<std::vector<std::array<int, 8>>>* det_results);
/// Get preprocessor reference of DBDetectorPreprocessor
virtual DBDetectorPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of DBDetectorPostprocessor
virtual DBDetectorPostprocessor& GetPostprocessor() {
return postprocessor_;
}
private:
bool Initialize();
DBDetectorPreprocessor preprocessor_;
DBDetectorPostprocessor postprocessor_;
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy