mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code * Create README_CN.md * Rename README_CN.md to README.md * Update README.md * Update README.md * Update VERSION_NUMBER * Update requirements.txt * Update README.md * update version in doc: * [Serving]Update Dockerfile (#1037) Update Dockerfile * Add license notice for RVM onnx model file (#1060) * [Model] Add GPL-3.0 license (#1065) Add GPL-3.0 license * PPOCR model support model clone * Update README.md * Update PPOCRv2 && PPOCRv3 clone code * Update PPOCR python __init__ * Add multi thread ocr example code * Update README.md * Update README.md * Update ResNet50_vd_infer multi process code * Add PPOCR multi process && thread example * Update README.md * Update README.md * Update multi-thread docs Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com> Co-authored-by: heliqi <1101791222@qq.com> Co-authored-by: WJJ1995 <wjjisloser@163.com>
93 lines
3.8 KiB
C++
Executable File
93 lines
3.8 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/det_postprocessor.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/det_preprocessor.h"
|
|
#include "fastdeploy/utils/unique_ptr.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All OCR series model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace ocr {
|
|
|
|
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
|
|
*/
|
|
class FASTDEPLOY_DECL DBDetector : public FastDeployModel {
|
|
public:
|
|
DBDetector();
|
|
/** \brief Set path of model file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
|
|
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format.
|
|
*/
|
|
DBDetector(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/** \brief Clone a new DBDetector with less memory usage when multiple instances of the same model are created
|
|
*
|
|
* \return new DBDetector* type unique pointer
|
|
*/
|
|
virtual std::unique_ptr<DBDetector> Clone() const;
|
|
|
|
/// Get model's name
|
|
std::string ModelName() const { return "ppocr/ocr_det"; }
|
|
|
|
/** \brief Predict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] boxes_result The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img,
|
|
std::vector<std::array<int, 8>>* boxes_result);
|
|
|
|
/** \brief BatchPredict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] det_results The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<std::vector<std::array<int, 8>>>* det_results);
|
|
|
|
/// Get preprocessor reference of DBDetectorPreprocessor
|
|
virtual DBDetectorPreprocessor& GetPreprocessor() {
|
|
return preprocessor_;
|
|
}
|
|
|
|
/// Get postprocessor reference of DBDetectorPostprocessor
|
|
virtual DBDetectorPostprocessor& GetPostprocessor() {
|
|
return postprocessor_;
|
|
}
|
|
|
|
private:
|
|
bool Initialize();
|
|
DBDetectorPreprocessor preprocessor_;
|
|
DBDetectorPostprocessor postprocessor_;
|
|
};
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|