Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov7/yolov7_pybind.cc
huangjianhui 312e1b097d [Other]Refactor PaddleSeg with preprocessor && postprocessor && support batch (#639)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-28 15:50:12 +08:00

88 lines
4.4 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv7(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv7Preprocessor>(
m, "YOLOv7Preprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv7Preprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("Failed to preprocess the input data in YOLOV7Preprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::detection::YOLOv7Preprocessor::GetSize, &vision::detection::YOLOv7Preprocessor::SetSize)
.def_property("padding_value", &vision::detection::YOLOv7Preprocessor::GetPaddingValue, &vision::detection::YOLOv7Preprocessor::SetPaddingValue)
.def_property("is_scale_up", &vision::detection::YOLOv7Preprocessor::GetScaleUp, &vision::detection::YOLOv7Preprocessor::SetScaleUp);
pybind11::class_<vision::detection::YOLOv7Postprocessor>(
m, "YOLOv7Postprocessor")
.def(pybind11::init<>())
.def("run", [](vision::detection::YOLOv7Postprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv7Postprocessor.");
}
return results;
})
.def("run", [](vision::detection::YOLOv7Postprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::DetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv7Postprocessor.");
}
return results;
})
.def_property("conf_threshold", &vision::detection::YOLOv7Postprocessor::GetConfThreshold, &vision::detection::YOLOv7Postprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::detection::YOLOv7Postprocessor::GetNMSThreshold, &vision::detection::YOLOv7Postprocessor::SetNMSThreshold);
pybind11::class_<vision::detection::YOLOv7, FastDeployModel>(m, "YOLOv7")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv7& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::detection::YOLOv7& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::detection::YOLOv7::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::detection::YOLOv7::GetPostprocessor);
}
} // namespace fastdeploy