mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors * fixed docs * fixed headpose typo * fixed typo * refactor yolov5 * update model infer * refactor pybind for yolov5 * rm origin yolov5 * fixed bugs * rm cuda preprocess * fixed bugs * fixed bugs * fixed bug * fixed bug * fix pybind * rm useless code * add convert_and_permute * fixed bugs * fixed im_info for bs_predict * fixed bug * add bs_predict for yolov5 * Add runtime test and batch eval * deal with comments * fixed bug * update testcase * fixed batch eval bug * fixed preprocess bug * refactor yolov7 * add yolov7 testcase * rm resize_after_load and add is_scale_up * fixed bug * set multi_label true Co-authored-by: Jason <928090362@qq.com>
104 lines
4.5 KiB
C++
Executable File
104 lines
4.5 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/yolov7/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
YOLOv7Postprocessor::YOLOv7Postprocessor() {
|
|
conf_threshold_ = 0.25;
|
|
nms_threshold_ = 0.5;
|
|
max_wh_ = 7680.0;
|
|
}
|
|
|
|
bool YOLOv7Postprocessor::Run(const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
int batch = tensors[0].shape[0];
|
|
|
|
results->resize(batch);
|
|
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
(*results)[bs].Clear();
|
|
(*results)[bs].Reserve(tensors[0].shape[1]);
|
|
if (tensors[0].dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
const float* data = reinterpret_cast<const float*>(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2];
|
|
for (size_t i = 0; i < tensors[0].shape[1]; ++i) {
|
|
int s = i * tensors[0].shape[2];
|
|
float confidence = data[s + 4];
|
|
const float* max_class_score =
|
|
std::max_element(data + s + 5, data + s + tensors[0].shape[2]);
|
|
confidence *= (*max_class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
|
|
(*results)[bs].label_ids.push_back(label_id);
|
|
(*results)[bs].scores.push_back(confidence);
|
|
}
|
|
|
|
if ((*results)[bs].boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
|
|
utils::NMS(&((*results)[bs]), nms_threshold_);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = ims_info[bs].find("output_shape");
|
|
auto iter_ipt = ims_info[bs].find("input_shape");
|
|
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
float pad_h = (out_h - ipt_h * scale) / 2;
|
|
float pad_w = (out_w - ipt_w * scale) / 2;
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
int32_t label_id = ((*results)[bs].label_ids)[i];
|
|
// clip box
|
|
(*results)[bs].boxes[i][0] = (*results)[bs].boxes[i][0] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][1] = (*results)[bs].boxes[i][1] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][2] = (*results)[bs].boxes[i][2] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][3] = (*results)[bs].boxes[i][3] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][0] = std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][1] = std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][2] = std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][3] = std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f);
|
|
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f);
|
|
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f);
|
|
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|