mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Optimize runtime * fix error * [Backend] Add option to print tensorrt conversion log (#1386) Add option to print tensorrt conversion log Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> --------- Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
847 lines
32 KiB
C++
847 lines
32 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime/backends/tensorrt/trt_backend.h"
|
|
|
|
#include <cstring>
|
|
#include <unordered_map>
|
|
|
|
#include "NvInferRuntime.h"
|
|
#include "fastdeploy/function/cuda_cast.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
#ifdef ENABLE_PADDLE2ONNX
|
|
#include "paddle2onnx/converter.h"
|
|
#endif
|
|
|
|
namespace fastdeploy {
|
|
|
|
FDTrtLogger* FDTrtLogger::logger = nullptr;
|
|
|
|
// Check if the model can build tensorrt engine now
|
|
// If the model has dynamic input shape, it will require defined shape
|
|
// information We can set the shape range information by function
|
|
// SetTrtInputShape() But if the shape range is not defined, then the engine
|
|
// cannot build, in this case, The engine will build once there's data feeded,
|
|
// and the shape range will be updated
|
|
bool CanBuildEngine(
|
|
const std::map<std::string, ShapeRangeInfo>& shape_range_info) {
|
|
for (auto iter = shape_range_info.begin(); iter != shape_range_info.end();
|
|
++iter) {
|
|
bool is_full_static = true;
|
|
for (size_t i = 0; i < iter->second.shape.size(); ++i) {
|
|
if (iter->second.shape[i] < 0) {
|
|
is_full_static = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_full_static) {
|
|
continue;
|
|
}
|
|
for (size_t i = 0; i < iter->second.shape.size(); ++i) {
|
|
if (iter->second.min[i] < 0 || iter->second.max[i] < 0) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TrtBackend::LoadTrtCache(const std::string& trt_engine_file) {
|
|
cudaSetDevice(option_.gpu_id);
|
|
|
|
std::string engine_buffer;
|
|
if (!ReadBinaryFromFile(trt_engine_file, &engine_buffer)) {
|
|
FDERROR << "Failed to load TensorRT Engine from " << trt_engine_file << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
FDUniquePtr<nvinfer1::IRuntime> runtime{
|
|
nvinfer1::createInferRuntime(*FDTrtLogger::Get())};
|
|
if (!runtime) {
|
|
FDERROR << "Failed to call createInferRuntime()." << std::endl;
|
|
return false;
|
|
}
|
|
engine_ = std::shared_ptr<nvinfer1::ICudaEngine>(
|
|
runtime->deserializeCudaEngine(engine_buffer.data(),
|
|
engine_buffer.size()),
|
|
FDInferDeleter());
|
|
if (!engine_) {
|
|
FDERROR << "Failed to call deserializeCudaEngine()." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
context_ = std::shared_ptr<nvinfer1::IExecutionContext>(
|
|
engine_->createExecutionContext());
|
|
GetInputOutputInfo();
|
|
|
|
for (int32_t i = 0; i < engine_->getNbBindings(); ++i) {
|
|
if (!engine_->bindingIsInput(i)) {
|
|
continue;
|
|
}
|
|
auto min = ToVec(engine_->getProfileDimensions(
|
|
i, 0, nvinfer1::OptProfileSelector::kMAX));
|
|
auto max = ToVec(engine_->getProfileDimensions(
|
|
i, 0, nvinfer1::OptProfileSelector::kMIN));
|
|
auto name = std::string(engine_->getBindingName(i));
|
|
auto iter = shape_range_info_.find(name);
|
|
if (iter == shape_range_info_.end()) {
|
|
FDERROR << "There's no input named '" << name << "' in loaded model."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
iter->second.Update(min);
|
|
iter->second.Update(max);
|
|
}
|
|
FDINFO << "Build TensorRT Engine from cache file: " << trt_engine_file
|
|
<< " with shape range information as below," << std::endl;
|
|
for (const auto& item : shape_range_info_) {
|
|
FDINFO << item.second << std::endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TrtBackend::Init(const RuntimeOption& runtime_option) {
|
|
auto trt_option = runtime_option.trt_option;
|
|
trt_option.model_file = runtime_option.model_file;
|
|
trt_option.params_file = runtime_option.params_file;
|
|
trt_option.model_format = runtime_option.model_format;
|
|
trt_option.gpu_id = runtime_option.device_id;
|
|
trt_option.enable_pinned_memory = runtime_option.enable_pinned_memory;
|
|
trt_option.external_stream_ = runtime_option.external_stream_;
|
|
if (runtime_option.device != Device::GPU) {
|
|
FDERROR << "TrtBackend only supports Device::GPU, but now it's "
|
|
<< runtime_option.device << "." << std::endl;
|
|
return false;
|
|
}
|
|
if (runtime_option.model_format != ModelFormat::PADDLE &&
|
|
runtime_option.model_format != ModelFormat::ONNX) {
|
|
FDERROR
|
|
<< "TrtBackend only supports model format PADDLE/ONNX, but now it's "
|
|
<< runtime_option.model_format << "." << std::endl;
|
|
return false;
|
|
}
|
|
if (runtime_option.model_format == ModelFormat::PADDLE) {
|
|
if (runtime_option.model_from_memory_) {
|
|
return InitFromPaddle(runtime_option.model_file,
|
|
runtime_option.params_file,
|
|
trt_option);
|
|
} else {
|
|
std::string model_buffer;
|
|
std::string params_buffer;
|
|
FDASSERT(ReadBinaryFromFile(runtime_option.model_file, &model_buffer),
|
|
"Failed to read model file %s.",
|
|
runtime_option.model_file.c_str());
|
|
FDASSERT(ReadBinaryFromFile(runtime_option.params_file, ¶ms_buffer),
|
|
"Failed to read parameters file %s.",
|
|
runtime_option.params_file.c_str());
|
|
return InitFromPaddle(model_buffer, params_buffer,
|
|
trt_option);
|
|
}
|
|
} else {
|
|
if (runtime_option.model_from_memory_) {
|
|
return InitFromOnnx(runtime_option.model_file, trt_option);
|
|
} else {
|
|
std::string model_buffer;
|
|
FDASSERT(ReadBinaryFromFile(runtime_option.model_file, &model_buffer),
|
|
"Failed to read model file %s.",
|
|
runtime_option.model_file.c_str());
|
|
return InitFromOnnx(model_buffer, trt_option);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TrtBackend::InitFromPaddle(const std::string& model_buffer,
|
|
const std::string& params_buffer,
|
|
const TrtBackendOption& option, bool verbose) {
|
|
if (initialized_) {
|
|
FDERROR << "TrtBackend is already initlized, cannot initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
option_ = option;
|
|
|
|
#ifdef ENABLE_PADDLE2ONNX
|
|
std::vector<paddle2onnx::CustomOp> ops;
|
|
ops.resize(1);
|
|
strcpy(ops[0].op_name, "pool2d");
|
|
strcpy(ops[0].export_op_name, "AdaptivePool2d");
|
|
char* model_content_ptr;
|
|
int model_content_size = 0;
|
|
char* calibration_cache_ptr;
|
|
int calibration_cache_size = 0;
|
|
if (!paddle2onnx::Export(model_buffer.c_str(), model_buffer.size(),
|
|
params_buffer.c_str(), params_buffer.size(),
|
|
&model_content_ptr, &model_content_size, 11, true,
|
|
verbose, true, true, true, ops.data(), 1, "tensorrt",
|
|
&calibration_cache_ptr, &calibration_cache_size, "",
|
|
&save_external_)) {
|
|
FDERROR << "Error occured while export PaddlePaddle to ONNX format."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
std::string onnx_model_proto(model_content_ptr,
|
|
model_content_ptr + model_content_size);
|
|
delete[] model_content_ptr;
|
|
model_content_ptr = nullptr;
|
|
if (calibration_cache_size) {
|
|
std::string calibration_str(calibration_cache_ptr,
|
|
calibration_cache_ptr + calibration_cache_size);
|
|
calibration_str_ = calibration_str;
|
|
delete[] calibration_cache_ptr;
|
|
}
|
|
if (save_external_) {
|
|
model_file_name_ = "model.onnx";
|
|
std::fstream f(model_file_name_, std::ios::out);
|
|
FDASSERT(f.is_open(), "Can not open file: %s to save model.",
|
|
model_file_name_.c_str());
|
|
f << onnx_model_proto;
|
|
f.close();
|
|
}
|
|
return InitFromOnnx(onnx_model_proto, option);
|
|
#else
|
|
FDERROR << "Didn't compile with PaddlePaddle frontend, you can try to "
|
|
"call `InitFromOnnx` instead."
|
|
<< std::endl;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool TrtBackend::InitFromOnnx(const std::string& model_buffer,
|
|
const TrtBackendOption& option) {
|
|
if (initialized_) {
|
|
FDERROR << "TrtBackend is already initlized, cannot initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
option_ = option;
|
|
cudaSetDevice(option_.gpu_id);
|
|
|
|
std::string onnx_content = model_buffer;
|
|
|
|
// This part of code will record the original outputs order
|
|
// because the converted tensorrt network may exist wrong order of outputs
|
|
outputs_order_.clear();
|
|
auto onnx_reader =
|
|
paddle2onnx::OnnxReader(onnx_content.c_str(), onnx_content.size());
|
|
for (int i = 0; i < onnx_reader.num_outputs; ++i) {
|
|
std::string name(onnx_reader.outputs[i].name);
|
|
outputs_order_[name] = i;
|
|
}
|
|
|
|
shape_range_info_.clear();
|
|
inputs_desc_.clear();
|
|
outputs_desc_.clear();
|
|
inputs_desc_.resize(onnx_reader.num_inputs);
|
|
outputs_desc_.resize(onnx_reader.num_outputs);
|
|
for (int i = 0; i < onnx_reader.num_inputs; ++i) {
|
|
std::string name(onnx_reader.inputs[i].name);
|
|
std::vector<int64_t> shape(
|
|
onnx_reader.inputs[i].shape,
|
|
onnx_reader.inputs[i].shape + onnx_reader.inputs[i].rank);
|
|
inputs_desc_[i].name = name;
|
|
inputs_desc_[i].shape.assign(shape.begin(), shape.end());
|
|
inputs_desc_[i].dtype = ReaderDtypeToTrtDtype(onnx_reader.inputs[i].dtype);
|
|
inputs_desc_[i].original_dtype =
|
|
ReaderDtypeToFDDtype(onnx_reader.inputs[i].dtype);
|
|
auto info = ShapeRangeInfo(shape);
|
|
info.name = name;
|
|
auto iter_min = option.min_shape.find(name);
|
|
auto iter_max = option.max_shape.find(name);
|
|
auto iter_opt = option.opt_shape.find(name);
|
|
if (iter_min != option.min_shape.end()) {
|
|
info.min.assign(iter_min->second.begin(), iter_min->second.end());
|
|
info.max.assign(iter_max->second.begin(), iter_max->second.end());
|
|
info.opt.assign(iter_opt->second.begin(), iter_opt->second.end());
|
|
}
|
|
shape_range_info_.insert(std::make_pair(name, info));
|
|
}
|
|
|
|
for (int i = 0; i < onnx_reader.num_outputs; ++i) {
|
|
std::string name(onnx_reader.outputs[i].name);
|
|
std::vector<int64_t> shape(
|
|
onnx_reader.outputs[i].shape,
|
|
onnx_reader.outputs[i].shape + onnx_reader.outputs[i].rank);
|
|
outputs_desc_[i].name = name;
|
|
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
|
|
outputs_desc_[i].dtype =
|
|
ReaderDtypeToTrtDtype(onnx_reader.outputs[i].dtype);
|
|
outputs_desc_[i].original_dtype =
|
|
ReaderDtypeToFDDtype(onnx_reader.outputs[i].dtype);
|
|
}
|
|
|
|
if (option_.external_stream_) {
|
|
stream_ = reinterpret_cast<cudaStream_t>(option_.external_stream_);
|
|
} else {
|
|
FDASSERT(cudaStreamCreate(&stream_) == 0,
|
|
"[ERROR] Error occurs while calling cudaStreamCreate().");
|
|
}
|
|
|
|
if (save_external_) {
|
|
onnx_content.clear();
|
|
onnx_content = model_file_name_;
|
|
}
|
|
if (!CreateTrtEngineFromOnnx(onnx_content)) {
|
|
FDERROR << "Failed to create tensorrt engine." << std::endl;
|
|
return false;
|
|
}
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
int TrtBackend::ShapeRangeInfoUpdated(const std::vector<FDTensor>& inputs) {
|
|
bool need_update_engine = false;
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
auto iter = shape_range_info_.find(inputs[i].name);
|
|
if (iter == shape_range_info_.end()) {
|
|
FDERROR << "There's no input named '" << inputs[i].name
|
|
<< "' in loaded model." << std::endl;
|
|
}
|
|
if (iter->second.Update(inputs[i].shape) == 1) {
|
|
need_update_engine = true;
|
|
}
|
|
}
|
|
return need_update_engine;
|
|
}
|
|
|
|
bool TrtBackend::Infer(std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs, bool copy_to_fd) {
|
|
if (inputs.size() != NumInputs()) {
|
|
FDERROR << "Require " << NumInputs() << "inputs, but get " << inputs.size()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
if (ShapeRangeInfoUpdated(inputs)) {
|
|
// meet new shape output of predefined max/min shape
|
|
// rebuild the tensorrt engine
|
|
FDWARNING
|
|
<< "TensorRT engine will be rebuilt once shape range information "
|
|
"changed, this may take lots of time, you can set a proper shape "
|
|
"range before loading model to avoid rebuilding process. refer "
|
|
"https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/"
|
|
"faq/"
|
|
"tensorrt_tricks.md for more details."
|
|
<< std::endl;
|
|
BuildTrtEngine();
|
|
}
|
|
|
|
RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN
|
|
cudaSetDevice(option_.gpu_id);
|
|
SetInputs(inputs);
|
|
AllocateOutputsBuffer(outputs, copy_to_fd);
|
|
|
|
RUNTIME_PROFILE_LOOP_BEGIN(1)
|
|
if (!context_->enqueueV2(bindings_.data(), stream_, nullptr)) {
|
|
FDERROR << "Failed to Infer with TensorRT." << std::endl;
|
|
return false;
|
|
}
|
|
RUNTIME_PROFILE_LOOP_END
|
|
|
|
for (size_t i = 0; i < outputs->size(); ++i) {
|
|
// if the final output tensor's dtype is different from the model output
|
|
// tensor's dtype, then we need cast the data to the final output's dtype
|
|
auto model_output_dtype =
|
|
GetFDDataType(outputs_device_buffer_[(*outputs)[i].name].dtype());
|
|
if ((*outputs)[i].dtype != model_output_dtype) {
|
|
FDTensor output_tensor;
|
|
output_tensor.SetExternalData(
|
|
(*outputs)[i].shape, model_output_dtype,
|
|
outputs_device_buffer_[(*outputs)[i].name].data(), Device::GPU);
|
|
|
|
casted_output_tensors_[(*outputs)[i].name].Resize(
|
|
(*outputs)[i].shape, (*outputs)[i].dtype, (*outputs)[i].name,
|
|
Device::GPU);
|
|
function::CudaCast(output_tensor,
|
|
&casted_output_tensors_[(*outputs)[i].name], stream_);
|
|
if (!copy_to_fd) {
|
|
(*outputs)[i].SetExternalData(
|
|
(*outputs)[i].shape, model_output_dtype,
|
|
casted_output_tensors_[(*outputs)[i].name].MutableData(),
|
|
Device::GPU, option_.gpu_id);
|
|
}
|
|
} else {
|
|
casted_output_tensors_[(*outputs)[i].name].SetExternalData(
|
|
(*outputs)[i].shape, model_output_dtype,
|
|
outputs_device_buffer_[(*outputs)[i].name].data(), Device::GPU);
|
|
}
|
|
}
|
|
if (copy_to_fd) {
|
|
for (size_t i = 0; i < outputs->size(); ++i) {
|
|
FDASSERT(
|
|
cudaMemcpyAsync((*outputs)[i].Data(),
|
|
casted_output_tensors_[(*outputs)[i].name].Data(),
|
|
(*outputs)[i].Nbytes(), cudaMemcpyDeviceToHost,
|
|
stream_) == 0,
|
|
"[ERROR] Error occurs while copy memory from GPU to CPU.");
|
|
}
|
|
FDASSERT(cudaStreamSynchronize(stream_) == cudaSuccess,
|
|
"[ERROR] Error occurs while sync cuda stream.");
|
|
}
|
|
RUNTIME_PROFILE_LOOP_H2D_D2H_END
|
|
return true;
|
|
}
|
|
|
|
void TrtBackend::GetInputOutputInfo() {
|
|
// Read the original dtypes from inputs_desc_ and outputs_desc_
|
|
std::unordered_map<std::string, FDDataType> inputs_original_dtype_map;
|
|
std::unordered_map<std::string, FDDataType> outputs_original_dtype_map;
|
|
for (size_t i = 0; i < inputs_desc_.size(); ++i) {
|
|
inputs_original_dtype_map[inputs_desc_[i].name] =
|
|
inputs_desc_[i].original_dtype;
|
|
}
|
|
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
|
outputs_original_dtype_map[outputs_desc_[i].name] =
|
|
outputs_desc_[i].original_dtype;
|
|
}
|
|
|
|
// Re-read the tensor infos from TRT model and write into inputs_desc_ and
|
|
// outputs_desc_
|
|
std::vector<TrtValueInfo>().swap(inputs_desc_);
|
|
std::vector<TrtValueInfo>().swap(outputs_desc_);
|
|
inputs_desc_.clear();
|
|
outputs_desc_.clear();
|
|
auto num_binds = engine_->getNbBindings();
|
|
for (auto i = 0; i < num_binds; ++i) {
|
|
std::string name = std::string(engine_->getBindingName(i));
|
|
auto shape = ToVec(engine_->getBindingDimensions(i));
|
|
auto dtype = engine_->getBindingDataType(i);
|
|
if (engine_->bindingIsInput(i)) {
|
|
auto original_dtype = inputs_original_dtype_map.count(name)
|
|
? inputs_original_dtype_map[name]
|
|
: GetFDDataType(dtype);
|
|
inputs_desc_.emplace_back(
|
|
TrtValueInfo{name, shape, dtype, original_dtype});
|
|
inputs_device_buffer_[name] = FDDeviceBuffer(dtype);
|
|
} else {
|
|
auto original_dtype = outputs_original_dtype_map.count(name)
|
|
? outputs_original_dtype_map[name]
|
|
: GetFDDataType(dtype);
|
|
outputs_desc_.emplace_back(
|
|
TrtValueInfo{name, shape, dtype, original_dtype});
|
|
outputs_device_buffer_[name] = FDDeviceBuffer(dtype);
|
|
casted_output_tensors_[name] = FDTensor();
|
|
}
|
|
io_name_index_[name] = i;
|
|
}
|
|
bindings_.resize(num_binds);
|
|
}
|
|
|
|
void TrtBackend::SetInputs(const std::vector<FDTensor>& inputs) {
|
|
for (const auto& item : inputs) {
|
|
// auto idx = engine_->getBindingIndex(item.name.c_str());
|
|
auto iter = io_name_index_.find(item.name);
|
|
FDASSERT(iter != io_name_index_.end(),
|
|
"TRTBackend SetInputs not find name:%s", item.name.c_str());
|
|
auto idx = iter->second;
|
|
std::vector<int> shape(item.shape.begin(), item.shape.end());
|
|
auto dims = ToDims(shape);
|
|
context_->setBindingDimensions(idx, dims);
|
|
|
|
if (item.device == Device::GPU) {
|
|
if (item.dtype == FDDataType::INT64) {
|
|
inputs_device_buffer_[item.name].resize(dims);
|
|
FDTensor input_tensor;
|
|
input_tensor.SetExternalData(item.shape, FDDataType::INT32,
|
|
inputs_device_buffer_[item.name].data(),
|
|
Device::GPU);
|
|
function::CudaCast(item, &input_tensor, stream_);
|
|
} else {
|
|
// no copy
|
|
inputs_device_buffer_[item.name].SetExternalData(dims, item.Data());
|
|
}
|
|
} else {
|
|
// Allocate input buffer memory
|
|
inputs_device_buffer_[item.name].resize(dims);
|
|
|
|
// copy from cpu to gpu
|
|
if (item.dtype == FDDataType::INT64) {
|
|
int64_t* data = static_cast<int64_t*>(const_cast<void*>(item.Data()));
|
|
std::vector<int32_t> casted_data(data, data + item.Numel());
|
|
FDASSERT(cudaMemcpyAsync(inputs_device_buffer_[item.name].data(),
|
|
static_cast<void*>(casted_data.data()),
|
|
item.Nbytes() / 2, cudaMemcpyHostToDevice,
|
|
stream_) == 0,
|
|
"Error occurs while copy memory from CPU to GPU.");
|
|
} else {
|
|
FDASSERT(cudaMemcpyAsync(inputs_device_buffer_[item.name].data(),
|
|
item.Data(), item.Nbytes(),
|
|
cudaMemcpyHostToDevice, stream_) == 0,
|
|
"Error occurs while copy memory from CPU to GPU.");
|
|
}
|
|
}
|
|
// binding input buffer
|
|
bindings_[idx] = inputs_device_buffer_[item.name].data();
|
|
}
|
|
}
|
|
|
|
void TrtBackend::AllocateOutputsBuffer(std::vector<FDTensor>* outputs,
|
|
bool copy_to_fd) {
|
|
if (outputs->size() != outputs_desc_.size()) {
|
|
outputs->resize(outputs_desc_.size());
|
|
}
|
|
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
|
// auto idx = engine_->getBindingIndex(outputs_desc_[i].name.c_str());
|
|
auto idx_iter = io_name_index_.find(outputs_desc_[i].name);
|
|
FDASSERT(idx_iter != io_name_index_.end(),
|
|
"TRTBackend Outputs not find name:%s",
|
|
outputs_desc_[i].name.c_str());
|
|
auto idx = idx_iter->second;
|
|
auto output_dims = context_->getBindingDimensions(idx);
|
|
|
|
// find the original index of output
|
|
auto iter = outputs_order_.find(outputs_desc_[i].name);
|
|
FDASSERT(
|
|
iter != outputs_order_.end(),
|
|
"Cannot find output: %s of tensorrt network from the original model.",
|
|
outputs_desc_[i].name.c_str());
|
|
auto ori_idx = iter->second;
|
|
|
|
// Allocate output buffer memory
|
|
outputs_device_buffer_[outputs_desc_[i].name].resize(output_dims);
|
|
|
|
// binding output buffer
|
|
bindings_[idx] = outputs_device_buffer_[outputs_desc_[i].name].data();
|
|
|
|
// set user's outputs info
|
|
std::vector<int64_t> shape(output_dims.d,
|
|
output_dims.d + output_dims.nbDims);
|
|
if (copy_to_fd) {
|
|
(*outputs)[ori_idx].is_pinned_memory = option_.enable_pinned_memory;
|
|
(*outputs)[ori_idx].Resize(shape, outputs_desc_[i].original_dtype,
|
|
outputs_desc_[i].name);
|
|
} else {
|
|
(*outputs)[ori_idx].name = outputs_desc_[i].name;
|
|
(*outputs)[ori_idx].SetExternalData(
|
|
shape, outputs_desc_[i].original_dtype, bindings_[idx], Device::GPU,
|
|
option_.gpu_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TrtBackend::BuildTrtEngine() {
|
|
if (option_.enable_log_info) {
|
|
FDTrtLogger::Get()->SetLog(true, true);
|
|
}
|
|
auto config =
|
|
FDUniquePtr<nvinfer1::IBuilderConfig>(builder_->createBuilderConfig());
|
|
if (!config) {
|
|
FDERROR << "Failed to call createBuilderConfig()." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (option_.enable_fp16) {
|
|
if (!builder_->platformHasFastFp16()) {
|
|
FDWARNING << "Detected FP16 is not supported in the current GPU, "
|
|
"will use FP32 instead."
|
|
<< std::endl;
|
|
} else {
|
|
FDINFO << "[TrtBackend] Use FP16 to inference." << std::endl;
|
|
config->setFlag(nvinfer1::BuilderFlag::kFP16);
|
|
}
|
|
}
|
|
|
|
FDINFO << "Start to building TensorRT Engine..." << std::endl;
|
|
|
|
if (context_) {
|
|
context_.reset();
|
|
engine_.reset();
|
|
}
|
|
|
|
builder_->setMaxBatchSize(option_.max_batch_size);
|
|
config->setMaxWorkspaceSize(option_.max_workspace_size);
|
|
auto profile = builder_->createOptimizationProfile();
|
|
for (const auto& item : shape_range_info_) {
|
|
FDASSERT(
|
|
profile->setDimensions(item.first.c_str(),
|
|
nvinfer1::OptProfileSelector::kMIN,
|
|
ToDims(item.second.min)),
|
|
"[TrtBackend] Failed to set min_shape for input: %s in TrtBackend.",
|
|
item.first.c_str());
|
|
FDASSERT(
|
|
profile->setDimensions(item.first.c_str(),
|
|
nvinfer1::OptProfileSelector::kMAX,
|
|
ToDims(item.second.max)),
|
|
"[TrtBackend] Failed to set max_shape for input: %s in TrtBackend.",
|
|
item.first.c_str());
|
|
if (item.second.opt.size() == 0) {
|
|
FDASSERT(
|
|
profile->setDimensions(item.first.c_str(),
|
|
nvinfer1::OptProfileSelector::kOPT,
|
|
ToDims(item.second.max)),
|
|
"[TrtBackend] Failed to set opt_shape for input: %s in TrtBackend.",
|
|
item.first.c_str());
|
|
} else {
|
|
FDASSERT(
|
|
item.second.opt.size() == item.second.shape.size(),
|
|
"Require the dimension of opt in shape range information equal to "
|
|
"dimension of input: %s in this model, but now it's %zu != %zu.",
|
|
item.first.c_str(), item.second.opt.size(), item.second.shape.size());
|
|
FDASSERT(
|
|
profile->setDimensions(item.first.c_str(),
|
|
nvinfer1::OptProfileSelector::kOPT,
|
|
ToDims(item.second.opt)),
|
|
"[TrtBackend] Failed to set opt_shape for input: %s in TrtBackend.",
|
|
item.first.c_str());
|
|
}
|
|
}
|
|
config->addOptimizationProfile(profile);
|
|
|
|
if (calibration_str_.size()) {
|
|
if (!builder_->platformHasFastInt8()) {
|
|
FDWARNING << "Detected INT8 is not supported in the current GPU, "
|
|
"will use FP32 instead."
|
|
<< std::endl;
|
|
} else {
|
|
FDINFO << "[TrtBackend] Use INT8 to inference." << std::endl;
|
|
config->setFlag(nvinfer1::BuilderFlag::kINT8);
|
|
Int8EntropyCalibrator2* calibrator =
|
|
new Int8EntropyCalibrator2(calibration_str_);
|
|
config->setInt8Calibrator(calibrator);
|
|
}
|
|
}
|
|
|
|
FDUniquePtr<nvinfer1::IHostMemory> plan{
|
|
builder_->buildSerializedNetwork(*network_, *config)};
|
|
if (!plan) {
|
|
FDERROR << "Failed to call buildSerializedNetwork()." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
FDUniquePtr<nvinfer1::IRuntime> runtime{
|
|
nvinfer1::createInferRuntime(*FDTrtLogger::Get())};
|
|
if (!runtime) {
|
|
FDERROR << "Failed to call createInferRuntime()." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
engine_ = std::shared_ptr<nvinfer1::ICudaEngine>(
|
|
runtime->deserializeCudaEngine(plan->data(), plan->size()),
|
|
FDInferDeleter());
|
|
if (!engine_) {
|
|
FDERROR << "Failed to call deserializeCudaEngine()." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
context_ = std::shared_ptr<nvinfer1::IExecutionContext>(
|
|
engine_->createExecutionContext());
|
|
GetInputOutputInfo();
|
|
|
|
FDINFO << "TensorRT Engine is built successfully." << std::endl;
|
|
if (option_.serialize_file != "") {
|
|
FDINFO << "Serialize TensorRTEngine to local file "
|
|
<< option_.serialize_file << "." << std::endl;
|
|
std::ofstream engine_file(option_.serialize_file.c_str(),
|
|
std::ios::binary | std::ios::out);
|
|
if (!engine_file) {
|
|
FDERROR << "Failed to open " << option_.serialize_file << " to write."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
engine_file.write(static_cast<char*>(plan->data()), plan->size());
|
|
engine_file.close();
|
|
FDINFO << "TensorRTEngine is serialized to local file "
|
|
<< option_.serialize_file
|
|
<< ", we can load this model from the seralized engine "
|
|
"directly next time."
|
|
<< std::endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TrtBackend::CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer) {
|
|
const auto explicitBatch =
|
|
1U << static_cast<uint32_t>(
|
|
nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
|
|
|
|
builder_ = FDUniquePtr<nvinfer1::IBuilder>(
|
|
nvinfer1::createInferBuilder(*FDTrtLogger::Get()));
|
|
if (!builder_) {
|
|
FDERROR << "Failed to call createInferBuilder()." << std::endl;
|
|
return false;
|
|
}
|
|
network_ = FDUniquePtr<nvinfer1::INetworkDefinition>(
|
|
builder_->createNetworkV2(explicitBatch));
|
|
if (!network_) {
|
|
FDERROR << "Failed to call createNetworkV2()." << std::endl;
|
|
return false;
|
|
}
|
|
parser_ = FDUniquePtr<nvonnxparser::IParser>(
|
|
nvonnxparser::createParser(*network_, *FDTrtLogger::Get()));
|
|
if (!parser_) {
|
|
FDERROR << "Failed to call createParser()." << std::endl;
|
|
return false;
|
|
}
|
|
bool model_parser;
|
|
if (save_external_) {
|
|
model_parser = !parser_->parseFromFile(onnx_model_buffer.c_str(), 0);
|
|
} else {
|
|
model_parser =
|
|
!parser_->parse(onnx_model_buffer.data(), onnx_model_buffer.size());
|
|
}
|
|
if (model_parser) {
|
|
FDERROR << "Failed to parse ONNX model by TensorRT." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (option_.serialize_file != "") {
|
|
std::ifstream fin(option_.serialize_file, std::ios::binary | std::ios::in);
|
|
if (fin) {
|
|
FDINFO << "Detect serialized TensorRT Engine file in "
|
|
<< option_.serialize_file << ", will load it directly."
|
|
<< std::endl;
|
|
fin.close();
|
|
// clear memory buffer of the temporary member
|
|
std::string().swap(onnx_model_buffer_);
|
|
return LoadTrtCache(option_.serialize_file);
|
|
}
|
|
}
|
|
|
|
if (!CanBuildEngine(shape_range_info_)) {
|
|
onnx_model_buffer_ = onnx_model_buffer;
|
|
FDWARNING << "Cannot build engine right now, because there's dynamic input "
|
|
"shape exists, list as below,"
|
|
<< std::endl;
|
|
for (int i = 0; i < NumInputs(); ++i) {
|
|
FDWARNING << "Input " << i << ": " << GetInputInfo(i) << std::endl;
|
|
}
|
|
FDWARNING
|
|
<< "FastDeploy will build the engine while inference with input data, "
|
|
"and will also collect the input shape range information. You "
|
|
"should be noticed that FastDeploy will rebuild the engine while "
|
|
"new input shape is out of the collected shape range, this may "
|
|
"bring some time consuming problem, refer "
|
|
"https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/"
|
|
"faq/"
|
|
"tensorrt_tricks.md for more details."
|
|
<< std::endl;
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
if (!BuildTrtEngine()) {
|
|
FDERROR << "Failed to build tensorrt engine." << std::endl;
|
|
}
|
|
|
|
// clear memory buffer of the temporary member
|
|
std::string().swap(onnx_model_buffer_);
|
|
return true;
|
|
}
|
|
|
|
TensorInfo TrtBackend::GetInputInfo(int index) {
|
|
FDASSERT(index < NumInputs(),
|
|
"The index: %d should less than the number of inputs: %d.", index,
|
|
NumInputs());
|
|
TensorInfo info;
|
|
info.name = inputs_desc_[index].name;
|
|
info.shape.assign(inputs_desc_[index].shape.begin(),
|
|
inputs_desc_[index].shape.end());
|
|
info.dtype = inputs_desc_[index].original_dtype;
|
|
return info;
|
|
}
|
|
|
|
std::vector<TensorInfo> TrtBackend::GetInputInfos() {
|
|
std::vector<TensorInfo> infos;
|
|
for (auto i = 0; i < inputs_desc_.size(); i++) {
|
|
infos.emplace_back(GetInputInfo(i));
|
|
}
|
|
return infos;
|
|
}
|
|
|
|
TensorInfo TrtBackend::GetOutputInfo(int index) {
|
|
FDASSERT(index < NumOutputs(),
|
|
"The index: %d should less than the number of outputs: %d.", index,
|
|
NumOutputs());
|
|
TensorInfo info;
|
|
info.name = outputs_desc_[index].name;
|
|
info.shape.assign(outputs_desc_[index].shape.begin(),
|
|
outputs_desc_[index].shape.end());
|
|
info.dtype = outputs_desc_[index].original_dtype;
|
|
return info;
|
|
}
|
|
|
|
std::vector<TensorInfo> TrtBackend::GetOutputInfos() {
|
|
std::vector<TensorInfo> infos;
|
|
for (auto i = 0; i < outputs_desc_.size(); i++) {
|
|
infos.emplace_back(GetOutputInfo(i));
|
|
}
|
|
return infos;
|
|
}
|
|
|
|
std::unique_ptr<BaseBackend> TrtBackend::Clone(RuntimeOption& runtime_option,
|
|
void* stream, int device_id) {
|
|
std::unique_ptr<BaseBackend> new_backend = utils::make_unique<TrtBackend>();
|
|
auto casted_backend = dynamic_cast<TrtBackend*>(new_backend.get());
|
|
if (device_id > 0 && device_id != option_.gpu_id) {
|
|
auto clone_option = option_;
|
|
clone_option.gpu_id = device_id;
|
|
clone_option.external_stream_ = stream;
|
|
if (runtime_option.model_from_memory_) {
|
|
FDASSERT(casted_backend->InitFromPaddle(runtime_option.model_file,
|
|
runtime_option.params_file,
|
|
clone_option),
|
|
"Clone model from Paddle failed while initialize TrtBackend.");
|
|
} else {
|
|
if (option_.model_format == ModelFormat::ONNX) {
|
|
std::string model_buffer = "";
|
|
FDASSERT(
|
|
ReadBinaryFromFile(clone_option.model_file, &model_buffer),
|
|
"Fail to read binary from model file while cloning TrtBackend");
|
|
FDASSERT(casted_backend->InitFromOnnx(model_buffer, clone_option),
|
|
"Clone model from ONNX failed while initialize TrtBackend.");
|
|
} else {
|
|
std::string model_buffer = "";
|
|
std::string params_buffer = "";
|
|
FDASSERT(
|
|
ReadBinaryFromFile(clone_option.model_file, &model_buffer),
|
|
"Fail to read binary from model file while cloning TrtBackend");
|
|
FDASSERT(
|
|
ReadBinaryFromFile(clone_option.params_file, ¶ms_buffer),
|
|
"Fail to read binary from parameter file while cloning TrtBackend");
|
|
FDASSERT(casted_backend->InitFromPaddle(model_buffer, params_buffer,
|
|
clone_option),
|
|
"Clone model from Paddle failed while initialize TrtBackend.");
|
|
}
|
|
}
|
|
FDWARNING << "The target device id:" << device_id
|
|
<< " is different from current device id:" << option_.gpu_id
|
|
<< ", cannot share memory with current engine." << std::endl;
|
|
return new_backend;
|
|
}
|
|
cudaSetDevice(option_.gpu_id);
|
|
casted_backend->option_.gpu_id = option_.gpu_id;
|
|
if (stream) {
|
|
casted_backend->stream_ = reinterpret_cast<cudaStream_t>(stream);
|
|
} else {
|
|
FDASSERT(cudaStreamCreate(&casted_backend->stream_) == 0,
|
|
"[ERROR] Error occurs while clone calling cudaStreamCreate().");
|
|
}
|
|
casted_backend->inputs_desc_.assign(inputs_desc_.begin(), inputs_desc_.end());
|
|
casted_backend->outputs_desc_.assign(outputs_desc_.begin(),
|
|
outputs_desc_.end());
|
|
casted_backend->outputs_order_.insert(outputs_order_.begin(),
|
|
outputs_order_.end());
|
|
casted_backend->shape_range_info_.insert(shape_range_info_.begin(),
|
|
shape_range_info_.end());
|
|
casted_backend->engine_ = engine_;
|
|
casted_backend->context_ = std::shared_ptr<nvinfer1::IExecutionContext>(
|
|
casted_backend->engine_->createExecutionContext());
|
|
casted_backend->GetInputOutputInfo();
|
|
FDINFO << "TRTBackend clone finish." << std::endl;
|
|
return new_backend;
|
|
}
|
|
|
|
} // namespace fastdeploy
|