mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add namespace for functions * Refactor PaddleDetection module * finish all the single image test * Update preprocessor.cc * fix some litte detail * add python api * Update postprocessor.cc
36 lines
1.4 KiB
C++
36 lines
1.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <pybind11/stl.h>
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindPPTinyPosePipeline(pybind11::module& m) {
|
|
pybind11::class_<pipeline::PPTinyPose>(m, "PPTinyPose")
|
|
|
|
.def(pybind11::init<fastdeploy::vision::detection::PicoDet*,
|
|
fastdeploy::vision::keypointdetection::PPTinyPose*>())
|
|
.def("predict", [](pipeline::PPTinyPose& self,
|
|
pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::KeyPointDetectionResult res;
|
|
self.Predict(&mat, &res);
|
|
return res;
|
|
})
|
|
|
|
.def_readwrite("detection_model_score_threshold",
|
|
&pipeline::PPTinyPose::detection_model_score_threshold);
|
|
}
|
|
|
|
} // namespace fastdeploy
|