Files
FastDeploy/fastdeploy/pipeline/pptinypose/pipeline.h
Jason beaa0fd190 [Model] Refactor PaddleDetection module (#575)
* Add namespace for functions

* Refactor PaddleDetection module

* finish all the single image test

* Update preprocessor.cc

* fix some litte detail

* add python api

* Update postprocessor.cc
2022-11-15 10:43:23 +08:00

68 lines
2.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/detection/ppdet/model.h"
#include "fastdeploy/vision/keypointdet/pptinypose/pptinypose.h"
namespace fastdeploy {
/** \brief All pipeline model APIs are defined inside this namespace
*
*/
namespace pipeline {
/*! @brief PPTinyPose Pipeline object used when to load a detection model + pptinypose model
*/
class FASTDEPLOY_DECL PPTinyPose {
public:
/** \brief Set initialized detection model object and pptinypose model object
*
* \param[in] det_model Initialized detection model object
* \param[in] pptinypose_model Initialized pptinypose model object
*/
PPTinyPose(
fastdeploy::vision::detection::PicoDet* det_model,
fastdeploy::vision::keypointdetection::PPTinyPose* pptinypose_model);
/** \brief Predict the keypoint detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread()
* \param[in] result The output keypoint detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* img,
fastdeploy::vision::KeyPointDetectionResult* result);
/* \brief The score threshold for detectin model to filter bbox before inputting pptinypose model
*/
float detection_model_score_threshold = 0;
protected:
fastdeploy::vision::detection::PicoDet* detector_ = nullptr;
fastdeploy::vision::keypointdetection::PPTinyPose* pptinypose_model_ =
nullptr;
virtual bool Detect(cv::Mat* img,
fastdeploy::vision::DetectionResult* result);
virtual bool KeypointDetect(
cv::Mat* img, fastdeploy::vision::KeyPointDetectionResult* result,
fastdeploy::vision::DetectionResult& detection_result);
};
} // namespace pipeline
} // namespace fastdeploy