Files
FastDeploy/fastdeploy/core/fd_tensor.h
Wang Xinyu efa46563f3 [nvJPEG] Integrate nvJPEG decoder (#1288)
* nvjpeg cmake

* add common decoder, nvjpeg decoder and add image name predict api

* ppclas support nvjpeg decoder

* remove useless comments

* image decoder support opencv

* nvjpeg decode fallback to opencv

* fdtensor add nbytes_allocated

* single image decode api

* fix bug

* add pybind

* ignore nvjpeg on jetson

* fix cmake in

* predict on fdmat

* remove image names predict api, add image decoder tutorial

* Update __init__.py

* fix pybind
2023-02-17 10:27:05 +08:00

160 lines
5.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "fastdeploy/core/allocate.h"
#include "fastdeploy/core/fd_scalar.h"
#include "fastdeploy/core/fd_type.h"
#include "fastdeploy/runtime/enum_variables.h"
namespace fastdeploy {
struct FASTDEPLOY_DECL FDTensor {
// std::vector<int8_t> data;
void* buffer_ = nullptr;
std::vector<int64_t> shape = {0};
std::string name = "";
FDDataType dtype = FDDataType::INT8;
// This use to skip memory copy step
// the external_data_ptr will point to the user allocated memory
// user has to maintain the memory, allocate and release
void* external_data_ptr = nullptr;
// The internal data will be on CPU
// Some times, the external data is on the GPU, and we are going to use
// GPU to inference the model
// so we can skip data transfer, which may improve the efficience
Device device = Device::CPU;
// By default the device id of FDTensor is -1, which means this value is
// invalid, and FDTensor is using the same device id as Runtime.
int device_id = -1;
// Whether the data buffer is in pinned memory, which is allocated
// with cudaMallocHost()
bool is_pinned_memory = false;
// if the external data is not on CPU, we use this temporary buffer
// to transfer data to CPU at some cases we need to visit the
// other devices' data
std::vector<int8_t> temporary_cpu_buffer;
// The number of bytes allocated so far.
// When resizing GPU memory, we will free and realloc the memory only if the
// required size is larger than this value.
size_t nbytes_allocated = 0;
// Get data buffer pointer
void* MutableData();
void* Data();
bool IsShared() { return external_data_ptr != nullptr; }
void StopSharing();
const void* Data() const;
// Use this data to get the tensor data to process
// Since the most senario is process data in CPU
// this function will return a pointer to cpu memory
// buffer.
// If the original data is on other device, the data
// will copy to cpu store in `temporary_cpu_buffer`
const void* CpuData() const;
// Set user memory buffer for Tensor, the memory is managed by
// the user it self, but the Tensor will share the memory with user
// So take care with the user buffer
void SetExternalData(const std::vector<int64_t>& new_shape,
const FDDataType& data_type, void* data_buffer,
const Device& new_device = Device::CPU,
int new_device_id = -1);
// Expand the shape of a Tensor. Insert a new axis that will appear
// at the `axis` position in the expanded Tensor shape.
void ExpandDim(int64_t axis = 0);
// Squeeze the shape of a Tensor. Erase the axis that will appear
// at the `axis` position in the squeezed Tensor shape.
void Squeeze(int64_t axis = 0);
// Initialize Tensor
// Include setting attribute for tensor
// and allocate cpu memory buffer
void Allocate(const std::vector<int64_t>& new_shape,
const FDDataType& data_type,
const std::string& tensor_name = "",
const Device& new_device = Device::CPU);
// Total size of tensor memory buffer in bytes
int Nbytes() const;
// Total number of elements in this tensor
int Numel() const;
// Get shape of FDTensor
std::vector<int64_t> Shape() const { return shape; }
// Get dtype of FDTensor
FDDataType Dtype() const { return dtype; }
void Resize(size_t nbytes);
void Resize(const std::vector<int64_t>& new_shape);
void Resize(const std::vector<int64_t>& new_shape,
const FDDataType& data_type, const std::string& tensor_name = "",
const Device& new_device = Device::CPU);
bool Reshape(const std::vector<int64_t>& new_shape);
// Debug function
// Use this function to print shape, dtype, mean, max, min
// prefix will also be printed as tag
void PrintInfo(const std::string& prefix = "TensorInfo: ") const;
bool ReallocFn(size_t nbytes);
void FreeFn();
FDTensor() {}
explicit FDTensor(const std::string& tensor_name);
explicit FDTensor(const char* tensor_name);
// Deep copy
FDTensor(const FDTensor& other);
// Move constructor
FDTensor(FDTensor&& other);
// Deep copy assignment
FDTensor& operator=(const FDTensor& other);
// Move assignment
FDTensor& operator=(FDTensor&& other);
// Scalar to FDTensor
explicit FDTensor(const Scalar& scalar);
~FDTensor() { FreeFn(); }
static void CopyBuffer(void* dst, const void* src, size_t nbytes,
const Device& device = Device::CPU,
bool is_pinned_memory = false);
};
} // namespace fastdeploy