mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs * Improve PPOCR example
115 lines
3.7 KiB
Python
Executable File
115 lines
3.7 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--cpu_thread_num",
|
||
type=int,
|
||
default=9,
|
||
help="Number of threads while inference on CPU.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
|
||
det_option = fd.RuntimeOption()
|
||
cls_option = fd.RuntimeOption()
|
||
rec_option = fd.RuntimeOption()
|
||
|
||
# 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
|
||
if args.device.lower() == "ascend":
|
||
det_option.use_ascend()
|
||
cls_option.use_ascend()
|
||
rec_option.use_ascend()
|
||
|
||
return det_option, cls_option, rec_option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# Detection模型, 检测文字框
|
||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||
# Classification模型,方向分类,可选
|
||
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
|
||
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
|
||
# Recognition模型,文字识别模型
|
||
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
||
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||
rec_label_file = args.rec_label_file
|
||
|
||
det_option, cls_option, rec_option = build_option(args)
|
||
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file, det_params_file, runtime_option=det_option)
|
||
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
|
||
|
||
# Rec模型启用静态shape推理
|
||
rec_model.preprocessor.static_shape_infer = True
|
||
|
||
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||
|
||
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
|
||
ppocr_v3.cls_batch_size = 1
|
||
ppocr_v3.rec_batch_size = 1
|
||
|
||
# 预测图片准备
|
||
im = cv2.imread(args.image)
|
||
|
||
#预测并打印结果
|
||
result = ppocr_v3.predict(im)
|
||
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_ppocr(im, result)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|