Files
FastDeploy/examples/vision/facealign/pipnet/cpp
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..

English | 简体中文

PIPNet C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of PIPNet on CPU/GPU and GPU accelerated by TensorRT.

Before deployment, two steps require confirmation

Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# Download the official converted PIPNet model files and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png

# CPU inference
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu
# GPU inference
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu
# TensorRT inference on GPU
./infer_demo --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt

The visualized result after running is as follows

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

PIPNet C++ Interface

PIPNet Class

fastdeploy::vision::facealign::PIPNet(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

PIPNet model loading and initialization, among which model_file is the exported ONNX model format.

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. Only passing an empty string when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

Predict Function

PIPNet::Predict(cv::Mat* im, FaceAlignmentResult* result)

Model prediction interface. Input images and output landmarks results.

Parameter

Class Member Variable

Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results

  • size(vector<int>): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [256, 256]