mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
110 lines
4.8 KiB
Python
110 lines
4.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import numpy as np
|
|
import time
|
|
|
|
import fastdeploy as fd
|
|
|
|
# triton_python_backend_utils is available in every Triton Python model. You
|
|
# need to use this module to create inference requests and responses. It also
|
|
# contains some utility functions for extracting information from model_config
|
|
# and converting Triton input/output types to numpy types.
|
|
import triton_python_backend_utils as pb_utils
|
|
|
|
|
|
class TritonPythonModel:
|
|
"""Your Python model must use the same class name. Every Python model
|
|
that is created must have "TritonPythonModel" as the class name.
|
|
"""
|
|
|
|
def initialize(self, args):
|
|
"""`initialize` is called only once when the model is being loaded.
|
|
Implementing `initialize` function is optional. This function allows
|
|
the model to intialize any state associated with this model.
|
|
Parameters
|
|
----------
|
|
args : dict
|
|
Both keys and values are strings. The dictionary keys and values are:
|
|
* model_config: A JSON string containing the model configuration
|
|
* model_instance_kind: A string containing model instance kind
|
|
* model_instance_device_id: A string containing model instance device ID
|
|
* model_repository: Model repository path
|
|
* model_version: Model version
|
|
* model_name: Model name
|
|
"""
|
|
# You must parse model_config. JSON string is not parsed here
|
|
self.model_config = json.loads(args['model_config'])
|
|
print("model_config:", self.model_config)
|
|
|
|
self.input_names = []
|
|
for input_config in self.model_config["input"]:
|
|
self.input_names.append(input_config["name"])
|
|
print("preprocess input names:", self.input_names)
|
|
|
|
self.output_names = []
|
|
self.output_dtype = []
|
|
for output_config in self.model_config["output"]:
|
|
self.output_names.append(output_config["name"])
|
|
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
|
self.output_dtype.append(dtype)
|
|
print("preprocess output names:", self.output_names)
|
|
self.preprocessor_ = fd.vision.detection.YOLOv5Preprocessor()
|
|
|
|
def execute(self, requests):
|
|
"""`execute` must be implemented in every Python model. `execute`
|
|
function receives a list of pb_utils.InferenceRequest as the only
|
|
argument. This function is called when an inference is requested
|
|
for this model. Depending on the batching configuration (e.g. Dynamic
|
|
Batching) used, `requests` may contain multiple requests. Every
|
|
Python model, must create one pb_utils.InferenceResponse for every
|
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
|
set the error argument when creating a pb_utils.InferenceResponse.
|
|
Parameters
|
|
----------
|
|
requests : list
|
|
A list of pb_utils.InferenceRequest
|
|
Returns
|
|
-------
|
|
list
|
|
A list of pb_utils.InferenceResponse. The length of this list must
|
|
be the same as `requests`
|
|
"""
|
|
responses = []
|
|
for request in requests:
|
|
data = pb_utils.get_input_tensor_by_name(request,
|
|
self.input_names[0])
|
|
data = data.as_numpy()
|
|
outputs, im_infos = self.preprocessor_.run(data)
|
|
|
|
# YOLOv5 preprocess has two output
|
|
dlpack_tensor = outputs[0].to_dlpack()
|
|
output_tensor_0 = pb_utils.Tensor.from_dlpack(self.output_names[0],
|
|
dlpack_tensor)
|
|
output_tensor_1 = pb_utils.Tensor(
|
|
self.output_names[1], np.array(
|
|
im_infos, dtype=np.object_))
|
|
inference_response = pb_utils.InferenceResponse(
|
|
output_tensors=[output_tensor_0, output_tensor_1])
|
|
responses.append(inference_response)
|
|
return responses
|
|
|
|
def finalize(self):
|
|
"""`finalize` is called only once when the model is being unloaded.
|
|
Implementing `finalize` function is optional. This function allows
|
|
the model to perform any necessary clean ups before exit.
|
|
"""
|
|
print('Cleaning up...')
|