Files
FastDeploy/examples/vision/classification/paddleclas/rknpu2/cpp/infer.cc
舞影凌风 973c746d06 [RKNPU2]support rknpu2 ClasModel #957 (#964)
* [RKNPU2]support rknpu2 ClasModel #957

* [RKNPU2]support rknpu2 ClasModel #957

* [RKNPU2]support rknpu2 add Resnet50_vd example  #957

* [RKNPU2]support rknpu2 add Resnet50_vd example  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957
2022-12-28 17:58:18 +08:00

59 lines
1.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + "/ResNet50_vd_infer_rk3588.rknn";
auto params_file = "";
auto config_file = model_dir + "/inference_cls.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file,option,format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.GetPreprocessor().DisablePermute();
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
std::cout << res.Str() << std::endl;
tc.End();
tc.PrintInfo("PPClas in RKNPU2");
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: rknpu_test path/to/model_dir path/to/image run_option, "
"e.g ./rknpu_test ./ppclas_model_dir ./images/ILSVRC2012_val_00000010.jpeg"
<< std::endl;
return -1;
}
RKNPU2Infer(argv[1], argv[2]);
return 0;
}