mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
43 lines
1.2 KiB
Python
43 lines
1.2 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
from fastdeploy import ModelFormat
|
|
import numpy as np
|
|
|
|
# 下载模型并解压
|
|
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.onnx"
|
|
fd.download(model_url, path=".")
|
|
|
|
option = fd.RuntimeOption()
|
|
|
|
option.set_model_path("mobilenetv2.onnx", model_format=ModelFormat.ONNX)
|
|
|
|
# **** GPU 配置 ***
|
|
option.use_gpu(0)
|
|
option.use_trt_backend()
|
|
|
|
# 初始化构造runtime
|
|
runtime = fd.Runtime(option)
|
|
|
|
# 获取模型输入名
|
|
input_name = runtime.get_input_info(0).name
|
|
|
|
# 构造随机数据进行推理
|
|
results = runtime.infer({
|
|
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
|
|
})
|
|
|
|
print(results[0].shape)
|