mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Update Inpaint pipeline * Update concat * Add GaussianRandomKernel * Update GaussianRandom * Add vae endoder * Add unet infer * Add vae decoder predict * add PrepareMaskAndMaskedImage * Add imwrite * Add time counter * Fix pipeline * use FDTensor move * Fix scaled_linear dpm solver * Add RGB2BGR
62 lines
2.4 KiB
C++
62 lines
2.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "./scheduler.h"
|
|
#include "fast_tokenizer/tokenizers/clip_fast_tokenizer.h"
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/runtime.h"
|
|
#include "opencv2/core/core.hpp"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace fastdeploy {
|
|
|
|
class StableDiffusionInpaintPipeline {
|
|
public:
|
|
typedef void (*callback_ptr)(int, int, FDTensor*);
|
|
|
|
StableDiffusionInpaintPipeline(
|
|
std::unique_ptr<Runtime> vae_encoder,
|
|
std::unique_ptr<Runtime> vae_decoder,
|
|
std::unique_ptr<Runtime> text_encoder, std::unique_ptr<Runtime> unet,
|
|
std::unique_ptr<Scheduler> scheduler,
|
|
const paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer&
|
|
tokenizer);
|
|
void Predict(const std::vector<std::string>& prompts, const cv::Mat& image,
|
|
const cv::Mat& mask_image, std::vector<FDTensor>* output_images,
|
|
int height = 512, int width = 512, int num_inference_steps = 50,
|
|
float guidance_scale = 7.5,
|
|
const std::vector<std::string>& negative_prompt = {},
|
|
int num_images_per_prompt = 1, float eta = 0.0,
|
|
uint32_t max_length = 77, const FDTensor* latents = nullptr,
|
|
bool output_cv_mat = true, callback_ptr callback = nullptr,
|
|
int callback_steps = 1);
|
|
|
|
private:
|
|
void PrepareMaskAndMaskedImage(const cv::Mat& image, const cv::Mat& mask_mat,
|
|
const std::vector<int64_t>& shape,
|
|
FDTensor* mask, FDTensor* mask_image);
|
|
std::unique_ptr<Runtime> vae_encoder_;
|
|
std::unique_ptr<Runtime> vae_decoder_;
|
|
std::unique_ptr<Runtime> text_encoder_;
|
|
std::unique_ptr<Runtime> unet_;
|
|
std::unique_ptr<Scheduler> scheduler_;
|
|
paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer tokenizer_;
|
|
};
|
|
|
|
} // namespace fastdeploy
|