Files
FastDeploy/examples/vision/segmentation/paddleseg
huangjianhui 6c31198342 [Other] Update deprecated segmentation apis && segmentation label map resize interinterpolation (#790)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-12-05 09:57:54 +08:00
..
2022-11-07 20:49:41 +08:00

PaddleSeg 模型部署

模型版本说明

目前FastDeploy支持如下模型的部署

【注意】如你部署的为PP-MattingPP-HumanMatting以及ModNet请参考Matting模型部署

准备PaddleSeg部署模型

PaddleSeg模型导出请参考其文档说明模型导出

注意

  • PaddleSeg导出的模型包含model.pdmodelmodel.pdiparamsdeploy.yaml三个文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息

下载预训练模型

为了方便开发者的测试下面提供了PaddleSeg导出的部分模型

  • without-argmax导出方式为不指定--input_shape指定--output_op none
  • with-argmax导出方式为不指定--input_shape指定--output_op argmax

开发者可直接下载使用。

模型 参数文件大小 输入Shape mIoU mIoU (flip) mIoU (ms+flip)
Unet-cityscapes-with-argmax | Unet-cityscapes-without-argmax 52MB 1024x512 65.00% 66.02% 66.89%
PP-LiteSeg-B(STDC2)-cityscapes-with-argmax | PP-LiteSeg-B(STDC2)-cityscapes-without-argmax 31MB 1024x512 79.04% 79.52% 79.85%
PP-HumanSegV1-Lite-with-argmax(通用人像分割模型) | PP-HumanSegV1-Lite-without-argmax(通用人像分割模型) 543KB 192x192 86.2% - -
PP-HumanSegV2-Lite-with-argmax(通用人像分割模型) | PP-HumanSegV2-Lite-without-argmax(通用人像分割模型) 12MB 192x192 92.52% - -
PP-HumanSegV2-Mobile-with-argmax(通用人像分割模型) | PP-HumanSegV2-Mobile-without-argmax(通用人像分割模型) 29MB 192x192 93.13% - -
PP-HumanSegV1-Server-with-argmax(通用人像分割模型) | PP-HumanSegV1-Server-without-argmax(通用人像分割模型) 103MB 512x512 96.47% - -
Portait-PP-HumanSegV2-Lite-with-argmax(肖像分割模型) | Portait-PP-HumanSegV2-Lite-without-argmax(肖像分割模型) 3.6M 256x144 96.63% - -
FCN-HRNet-W18-cityscapes-with-argmax | FCN-HRNet-W18-cityscapes-without-argmax(暂时不支持ONNXRuntime的GPU推理) 37MB 1024x512 78.97% 79.49% 79.74%
Deeplabv3-ResNet101-OS8-cityscapes-with-argmax | Deeplabv3-ResNet101-OS8-cityscapes-without-argmax 150MB 1024x512 79.90% 80.22% 80.47%

详细部署文档