mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * Add YOLOv5Face Model support * fixed examples/vision typos * fixed runtime_option print func bugs
编译YOLOv5Face示例
当前支持模型版本为:YOLOv5Face CommitID:4fd1ead
下载和解压预测库
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
tar xvf fastdeploy-linux-x64-0.0.3.tgz
编译示例代码
mkdir build & cd build
cmake ..
make -j
获取ONNX文件
访问YOLOv5Face官方github库,按照指引下载安装,下载yolov5s-face.pt
模型,利用 export.py
得到onnx
格式文件。
-
下载yolov5face模型文件
Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing
-
导出onnx格式文件
PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1
-
onnx模型简化(可选)
onnxsim yolov5s-face.onnx yolov5s-face.onnx
-
移动onnx文件到可执行文件的目录
cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/cpp/build
准备测试图片
准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录
执行
./yolov5face_demo
执行完后可视化的结果保存在本地vis_result.jpg
,同时会将检测框输出在终端,如下所示
aceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5]
749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470)
897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066)
281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048)
132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197)
699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794)
# ...