Files
FastDeploy/csharp/fastdeploy/vision/segmentation/model.cs
chenjian fc15124800 [Doc] add doxygen docs for c sharp api (#1495)
add doxygen docs for c sharp api

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-09 12:32:22 +08:00

166 lines
7.1 KiB
C#

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using OpenCvSharp;
using fastdeploy.types_internal_c;
namespace fastdeploy {
namespace vision {
namespace segmentation {
/*! @brief PaddleSeg serials model object used when to load a PaddleSeg model exported by PaddleSeg repository
*/
public class PaddleSegModel {
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g unet/model.pdmodel
* \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g unet/deploy.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
public PaddleSegModel(string model_file, string params_file,
string config_file, RuntimeOption custom_option = null,
ModelFormat model_format = ModelFormat.PADDLE) {
if (custom_option == null) {
custom_option = new RuntimeOption();
}
fd_paddleseg_model_wrapper = FD_C_CreatePaddleSegModelWrapper(
model_file, params_file, config_file, custom_option.GetWrapperPtr(),
model_format);
}
~PaddleSegModel() {
FD_C_DestroyPaddleSegModelWrapper(fd_paddleseg_model_wrapper);
}
/// Get model's name
public string ModelName() {
return "PaddleSeg";
}
/** \brief DEPRECATED Predict the segmentation result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
*
* \return SegmentationResult
*/
public SegmentationResult Predict(Mat img) {
FD_SegmentationResult fd_segmentation_result = new FD_SegmentationResult();
if(! FD_C_PaddleSegModelWrapperPredict(
fd_paddleseg_model_wrapper, img.CvPtr,
ref fd_segmentation_result))
{
return null;
} // predict
SegmentationResult segmentation_result =
ConvertResult.ConvertCResultToSegmentationResult(fd_segmentation_result);
FD_C_DestroySegmentationResult(ref fd_segmentation_result);
return segmentation_result;
}
/** \brief Predict the segmentation results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
*
* \return List<SegmentationResult>
*/
public List<SegmentationResult> BatchPredict(List<Mat> imgs){
FD_OneDimMat imgs_in = new FD_OneDimMat();
imgs_in.size = (nuint)imgs.Count;
// Copy data to unmanaged memory
IntPtr[] mat_ptrs = new IntPtr[imgs_in.size];
for(int i=0;i < (int)imgs.Count; i++){
mat_ptrs[i] = imgs[i].CvPtr;
}
int size = Marshal.SizeOf(new IntPtr()) * (int)imgs_in.size;
imgs_in.data = Marshal.AllocHGlobal(size);
Marshal.Copy(mat_ptrs, 0, imgs_in.data,
mat_ptrs.Length);
FD_OneDimSegmentationResult fd_segmentation_result_array = new FD_OneDimSegmentationResult();
if (!FD_C_PaddleSegModelWrapperBatchPredict(fd_paddleseg_model_wrapper, imgs_in, ref fd_segmentation_result_array)){
return null;
}
List<SegmentationResult> results_out = new List<SegmentationResult>();
for(int i=0;i < (int)imgs.Count; i++){
FD_SegmentationResult fd_segmentation_result = (FD_SegmentationResult)Marshal.PtrToStructure(
fd_segmentation_result_array.data + i * Marshal.SizeOf(new FD_SegmentationResult()),
typeof(FD_SegmentationResult));
results_out.Add(ConvertResult.ConvertCResultToSegmentationResult(fd_segmentation_result));
FD_C_DestroySegmentationResult(ref fd_segmentation_result);
}
return results_out;
}
/// Check whether model is initialized successfully
public bool Initialized() {
return FD_C_PaddleSegModelWrapperInitialized(fd_paddleseg_model_wrapper);
}
// below are underlying C api
private IntPtr fd_paddleseg_model_wrapper;
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreatePaddleSegModelWrapper")]
private static extern IntPtr FD_C_CreatePaddleSegModelWrapper(
string model_file, string params_file, string config_file,
IntPtr fd_runtime_option_wrapper, ModelFormat model_format);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroyPaddleSegModelWrapper")]
private static extern void
FD_C_DestroyPaddleSegModelWrapper(IntPtr fd_paddleseg_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleSegModelWrapperPredict")]
private static extern bool
FD_C_PaddleSegModelWrapperPredict(IntPtr fd_paddleseg_model_wrapper,
IntPtr img,
ref FD_SegmentationResult fd_segmentation_result);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_CreateSegmentationResultWrapper")]
private static extern IntPtr FD_C_CreateSegmentationResultWrapper();
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_DestroySegmentationResultWrapper")]
private static extern void
FD_C_DestroySegmentationResultWrapper(IntPtr fd_segmentation_result_wrapper);
[DllImport("fastdeploy.dll", EntryPoint = "FD_C_DestroySegmentationResult")]
private static extern void
FD_C_DestroySegmentationResult(ref FD_SegmentationResult fd_segmentation_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_SegmentationResultWrapperToCResult")]
private static extern void
FD_C_SegmentationResultWrapperToCResult(IntPtr fd_segmentation_result_wrapper, ref FD_SegmentationResult fd_segmentation_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_CreateSegmentationResultWrapperFromCResult")]
private static extern IntPtr
FD_C_CreateSegmentationResultWrapperFromCResult(ref FD_SegmentationResult fd_segmentation_result);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleSegModelWrapperInitialized")]
private static extern bool
FD_C_PaddleSegModelWrapperInitialized(IntPtr fd_paddleseg_model_wrapper);
[DllImport("fastdeploy.dll",
EntryPoint = "FD_C_PaddleSegModelWrapperBatchPredict")]
private static extern bool
FD_C_PaddleSegModelWrapperBatchPredict(IntPtr fd_paddleseg_model_wrapper,
FD_OneDimMat imgs,
ref FD_OneDimSegmentationResult results);
}
}
}
}