Files
FastDeploy/fastdeploy/output/token_processor.py
2025-06-09 20:26:53 +08:00

307 lines
12 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import threading
import time
import traceback
from collections import Counter
from paddlenlp.utils.env import MAX_BSZ, MAX_DRAFT_TOKENS, SPECULATE_MAX_BSZ
from fastdeploy.engine.request import (CompletionOutput, RequestMetrics,
RequestOutput)
from fastdeploy.metrics.metrics import main_process_metrics
from fastdeploy.utils import llm_logger
class TokenProcessor(object):
"""
get Token/Score from Paddle inference engine
"""
def __init__(self, cfg, cached_generated_tokens):
import paddle
paddle.device.set_device("cpu")
self.cfg = cfg
self.cached_generated_tokens = cached_generated_tokens
self.resource_manager = None
self.tokens_counter = Counter()
self.is_speculate_decoding = False
if self.is_speculate_decoding:
self.output_tokens = paddle.full(shape=[
SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2, 1
],
fill_value=2,
dtype="int64")
else:
self.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1],
fill_value=2,
dtype="int64")
self.worker = None
self.statics_start_time = time.time()
self.number_of_tasks = 0
self.number_of_input_tokens = 0
self.number_of_output_tokens = 0
self.total_step = 0
def set_resource_manager(self, resource_manager):
"""
set ResourceManager
Args:
resource_manager (ResourceManager)
"""
assert self.resource_manager is None, "The resource manager is not None, cannot set again."
self.resource_manager = resource_manager
def run(self):
"""
start thread to get tokens
"""
assert self.resource_manager is not None, "The resource manager is None, cannot run."
if self.worker is not None:
raise Exception("Worker is already running!")
self.worker = threading.Thread(target=self.process_sampling_results,
args=())
self.worker.daemon = True
self.worker.start()
def process_sampling_results(self):
"""
read tokens from paddle inference engine and process
"""
from fastdeploy.model_executor.models import \
inference_runner_supported_models
if self.cfg.model_config.architectures not in inference_runner_supported_models \
and "ErnieMoEVLForCausalLM" not in self.cfg.model_config.architectures:
from paddlenlp_ops import get_output, speculate_get_output
else:
os.environ["ELLM_LOG_LEVEL"] = "3"
use_pip_eff_llm = os.getenv('USE_PIP_EFF_LLM')
if use_pip_eff_llm is None:
from fastdeploy.model_executor.ops.gpu import (
get_output, speculate_get_output)
else:
from efficientllm.ops.gpu import (get_output,
speculate_get_output)
while True:
try:
rank_id = 0
is_blocking = True
if self.is_speculate_decoding:
speculate_get_output(self.output_tokens, rank_id,
is_blocking)
else:
get_output(self.output_tokens, rank_id, is_blocking)
if self.output_tokens[0, 0] == -2:
continue
self._process_batch_output()
except Exception as e:
llm_logger.info("while get input_data error: {0} {1}".format(
e, str(traceback.format_exc())))
def postprocess(self, batch_result):
"""
single post-processing function
Args:
batch_result (list): batch results
"""
self.cached_generated_tokens.put_results(batch_result)
def _recycle_resources(self, task_id, index, task):
"""
recycle resources
"""
self.resource_manager.stop_flags[index] = True
self.resource_manager.tasks_list[index] = None
self.resource_manager._recycle_block_tables(task.block_tables)
if task_id in self.tokens_counter:
del self.tokens_counter[task_id]
def _process_batch_output(self):
"""
batch post-processing function
"""
tokens = self.output_tokens.numpy()
batch = self.output_tokens[1, 0]
if not self.is_speculate_decoding:
tokens = tokens[2:batch + 2]
else:
accept_num = tokens[2:batch + 2]
batch_result = list()
for i in range(batch):
if self.resource_manager.stop_flags[i]:
continue
if not self.is_speculate_decoding:
token_ids = [int(tokens[i, 0])]
else:
token_ids = tokens[
2 + SPECULATE_MAX_BSZ + i * MAX_DRAFT_TOKENS:2 +
SPECULATE_MAX_BSZ + i * MAX_DRAFT_TOKENS +
accept_num[i, 0],
0,
].tolist()
if any(token_id < 0 for token_id in token_ids):
continue
task = self.resource_manager.tasks_list[i]
if self.cfg.enable_chunked_prefill:
if task.get("prefill_token_num", None) is None:
task.set("prefill_token_num", task.token_chunk_size)
else:
task.prefill_token_num += task.token_chunk_size
if task.prompt_token_ids_len > task.prefill_token_num:
continue
task_id = task.request_id
self.total_step += 1
current_time = time.time()
if self.tokens_counter[task_id] == 0:
metrics = RequestMetrics(
arrival_time=task.arrival_time,
inference_start_time=task.inference_start_time,
first_token_time=time.time() - task.inference_start_time,
time_in_queue=task.schedule_start_time -
task.preprocess_end_time,
preprocess_cost_time=task.preprocess_end_time -
task.preprocess_start_time)
main_process_metrics.time_to_first_token.observe(
current_time - task.inference_start_time)
main_process_metrics.request_queue_time.observe(
metrics.time_in_queue)
else:
if hasattr(task, 'last_token_time'
) and task.last_token_time is not None:
token_gen_time = current_time - task.last_token_time
main_process_metrics.time_per_output_token.observe(
token_gen_time)
task.last_token_time = current_time
metrics = RequestMetrics(
arrival_time=time.time(),
request_start_time=task.arrival_time,
)
self.number_of_output_tokens += len(token_ids)
result = RequestOutput(request_id=task_id,
outputs=CompletionOutput(index=i,
token_ids=[]),
finished=False,
metrics=metrics)
if self.tokens_counter[task_id] == 0:
if task.messages is not None:
result.prompt = task.messages
result.prompt_token_ids = task.prompt_token_ids
for token_id in token_ids:
self.tokens_counter[task_id] += 1
result.outputs.token_ids.append(token_id)
if token_id in task.eos_token_ids:
result.finished = True
result.prompt = task.prompt
result.prompt_token_ids = task.prompt_token_ids
llm_logger.info(
f"Request: {task_id} finished, number of "
f"generated tokens: {self.tokens_counter[task_id]}.")
llm_logger.info(
f"Request: {task_id} token ratio: {self.tokens_counter[task_id] / (time.time() - task.inference_start_time)}"
)
llm_logger.info(f"{self.resource_manager.info()}")
llm_logger.info(
f"Speculate accept ratio: {1 - self.total_step * 1.0 / self.number_of_output_tokens}"
f" total step: {self.total_step}. total_output_token_num: {self.number_of_output_tokens}"
)
self._recycle_resources(task_id, i, task)
main_process_metrics.num_requests_running.dec(1)
main_process_metrics.request_inference_time.observe(
current_time - task.inference_start_time)
break
batch_result.append(result)
self.postprocess(batch_result)
class WarmUpTokenProcessor(TokenProcessor):
"""
Warmup Processor
"""
def __init__(self, cfg):
super().__init__(cfg)
self._is_running = True
self._is_blocking = True
def postprocess(self, batch_result):
pass
def process_sampling_results(self):
"""
get output from model and process it
"""
from fastdeploy.model_executor.models import \
inference_runner_supported_models
if self.cfg.model_config.architectures not in inference_runner_supported_models \
and "ErnieMoEVLForCausalLM" not in self.cfg.model_config.architectures:
from paddlenlp_ops import get_output, speculate_get_output
else:
os.environ["ELLM_LOG_LEVEL"] = "3"
use_pip_eff_llm = os.getenv('USE_PIP_EFF_LLM')
if use_pip_eff_llm is None:
from fastdeploy.model_executor.ops.gpu import (
get_output, speculate_get_output)
else:
from efficientllm.ops.gpu import (get_output,
speculate_get_output)
while self._is_running:
try:
rank_id = 0
if self.is_speculate_decoding:
speculate_get_output(self.output_tokens, rank_id,
self._is_blocking)
else:
get_output(self.output_tokens, rank_id, self._is_blocking)
if self.output_tokens[0, 0] == -2:
continue
self._process_batch_output()
except Exception as e:
llm_logger.info("while get input_data error: {0} {1}".format(
e, str(traceback.format_exc())))
def stop(self):
"""
stop warm up thread
"""
self._is_running = False
self.worker.join()
llm_logger.info("warm up thread stop")
del self.worker