mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
307 lines
12 KiB
Python
307 lines
12 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
import os
|
|
import threading
|
|
import time
|
|
import traceback
|
|
from collections import Counter
|
|
|
|
from paddlenlp.utils.env import MAX_BSZ, MAX_DRAFT_TOKENS, SPECULATE_MAX_BSZ
|
|
|
|
from fastdeploy.engine.request import (CompletionOutput, RequestMetrics,
|
|
RequestOutput)
|
|
from fastdeploy.metrics.metrics import main_process_metrics
|
|
from fastdeploy.utils import llm_logger
|
|
|
|
|
|
class TokenProcessor(object):
|
|
"""
|
|
get Token/Score from Paddle inference engine
|
|
"""
|
|
|
|
def __init__(self, cfg, cached_generated_tokens):
|
|
import paddle
|
|
|
|
paddle.device.set_device("cpu")
|
|
self.cfg = cfg
|
|
self.cached_generated_tokens = cached_generated_tokens
|
|
self.resource_manager = None
|
|
|
|
self.tokens_counter = Counter()
|
|
|
|
self.is_speculate_decoding = False
|
|
if self.is_speculate_decoding:
|
|
self.output_tokens = paddle.full(shape=[
|
|
SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2, 1
|
|
],
|
|
fill_value=2,
|
|
dtype="int64")
|
|
else:
|
|
self.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1],
|
|
fill_value=2,
|
|
dtype="int64")
|
|
self.worker = None
|
|
|
|
self.statics_start_time = time.time()
|
|
self.number_of_tasks = 0
|
|
self.number_of_input_tokens = 0
|
|
self.number_of_output_tokens = 0
|
|
self.total_step = 0
|
|
|
|
def set_resource_manager(self, resource_manager):
|
|
"""
|
|
set ResourceManager
|
|
|
|
Args:
|
|
resource_manager (ResourceManager)
|
|
"""
|
|
assert self.resource_manager is None, "The resource manager is not None, cannot set again."
|
|
self.resource_manager = resource_manager
|
|
|
|
def run(self):
|
|
"""
|
|
start thread to get tokens
|
|
"""
|
|
assert self.resource_manager is not None, "The resource manager is None, cannot run."
|
|
if self.worker is not None:
|
|
raise Exception("Worker is already running!")
|
|
|
|
self.worker = threading.Thread(target=self.process_sampling_results,
|
|
args=())
|
|
self.worker.daemon = True
|
|
self.worker.start()
|
|
|
|
def process_sampling_results(self):
|
|
"""
|
|
read tokens from paddle inference engine and process
|
|
"""
|
|
from fastdeploy.model_executor.models import \
|
|
inference_runner_supported_models
|
|
if self.cfg.model_config.architectures not in inference_runner_supported_models \
|
|
and "ErnieMoEVLForCausalLM" not in self.cfg.model_config.architectures:
|
|
from paddlenlp_ops import get_output, speculate_get_output
|
|
else:
|
|
os.environ["ELLM_LOG_LEVEL"] = "3"
|
|
use_pip_eff_llm = os.getenv('USE_PIP_EFF_LLM')
|
|
if use_pip_eff_llm is None:
|
|
from fastdeploy.model_executor.ops.gpu import (
|
|
get_output, speculate_get_output)
|
|
else:
|
|
from efficientllm.ops.gpu import (get_output,
|
|
speculate_get_output)
|
|
|
|
while True:
|
|
try:
|
|
rank_id = 0
|
|
is_blocking = True
|
|
if self.is_speculate_decoding:
|
|
speculate_get_output(self.output_tokens, rank_id,
|
|
is_blocking)
|
|
else:
|
|
get_output(self.output_tokens, rank_id, is_blocking)
|
|
|
|
if self.output_tokens[0, 0] == -2:
|
|
continue
|
|
|
|
self._process_batch_output()
|
|
except Exception as e:
|
|
llm_logger.info("while get input_data error: {0} {1}".format(
|
|
e, str(traceback.format_exc())))
|
|
|
|
def postprocess(self, batch_result):
|
|
"""
|
|
single post-processing function
|
|
|
|
Args:
|
|
batch_result (list): batch results
|
|
"""
|
|
self.cached_generated_tokens.put_results(batch_result)
|
|
|
|
def _recycle_resources(self, task_id, index, task):
|
|
"""
|
|
recycle resources
|
|
"""
|
|
self.resource_manager.stop_flags[index] = True
|
|
self.resource_manager.tasks_list[index] = None
|
|
self.resource_manager._recycle_block_tables(task.block_tables)
|
|
if task_id in self.tokens_counter:
|
|
del self.tokens_counter[task_id]
|
|
|
|
def _process_batch_output(self):
|
|
"""
|
|
batch post-processing function
|
|
"""
|
|
tokens = self.output_tokens.numpy()
|
|
batch = self.output_tokens[1, 0]
|
|
if not self.is_speculate_decoding:
|
|
tokens = tokens[2:batch + 2]
|
|
else:
|
|
accept_num = tokens[2:batch + 2]
|
|
|
|
batch_result = list()
|
|
for i in range(batch):
|
|
if self.resource_manager.stop_flags[i]:
|
|
continue
|
|
|
|
if not self.is_speculate_decoding:
|
|
token_ids = [int(tokens[i, 0])]
|
|
else:
|
|
token_ids = tokens[
|
|
2 + SPECULATE_MAX_BSZ + i * MAX_DRAFT_TOKENS:2 +
|
|
SPECULATE_MAX_BSZ + i * MAX_DRAFT_TOKENS +
|
|
accept_num[i, 0],
|
|
0,
|
|
].tolist()
|
|
if any(token_id < 0 for token_id in token_ids):
|
|
continue
|
|
|
|
task = self.resource_manager.tasks_list[i]
|
|
|
|
if self.cfg.enable_chunked_prefill:
|
|
if task.get("prefill_token_num", None) is None:
|
|
task.set("prefill_token_num", task.token_chunk_size)
|
|
else:
|
|
task.prefill_token_num += task.token_chunk_size
|
|
if task.prompt_token_ids_len > task.prefill_token_num:
|
|
continue
|
|
|
|
task_id = task.request_id
|
|
|
|
self.total_step += 1
|
|
current_time = time.time()
|
|
if self.tokens_counter[task_id] == 0:
|
|
metrics = RequestMetrics(
|
|
arrival_time=task.arrival_time,
|
|
inference_start_time=task.inference_start_time,
|
|
first_token_time=time.time() - task.inference_start_time,
|
|
time_in_queue=task.schedule_start_time -
|
|
task.preprocess_end_time,
|
|
preprocess_cost_time=task.preprocess_end_time -
|
|
task.preprocess_start_time)
|
|
|
|
main_process_metrics.time_to_first_token.observe(
|
|
current_time - task.inference_start_time)
|
|
main_process_metrics.request_queue_time.observe(
|
|
metrics.time_in_queue)
|
|
|
|
else:
|
|
if hasattr(task, 'last_token_time'
|
|
) and task.last_token_time is not None:
|
|
token_gen_time = current_time - task.last_token_time
|
|
main_process_metrics.time_per_output_token.observe(
|
|
token_gen_time)
|
|
|
|
task.last_token_time = current_time
|
|
metrics = RequestMetrics(
|
|
arrival_time=time.time(),
|
|
request_start_time=task.arrival_time,
|
|
)
|
|
self.number_of_output_tokens += len(token_ids)
|
|
result = RequestOutput(request_id=task_id,
|
|
outputs=CompletionOutput(index=i,
|
|
token_ids=[]),
|
|
finished=False,
|
|
metrics=metrics)
|
|
if self.tokens_counter[task_id] == 0:
|
|
if task.messages is not None:
|
|
result.prompt = task.messages
|
|
result.prompt_token_ids = task.prompt_token_ids
|
|
|
|
for token_id in token_ids:
|
|
self.tokens_counter[task_id] += 1
|
|
result.outputs.token_ids.append(token_id)
|
|
if token_id in task.eos_token_ids:
|
|
result.finished = True
|
|
result.prompt = task.prompt
|
|
result.prompt_token_ids = task.prompt_token_ids
|
|
llm_logger.info(
|
|
f"Request: {task_id} finished, number of "
|
|
f"generated tokens: {self.tokens_counter[task_id]}.")
|
|
llm_logger.info(
|
|
f"Request: {task_id} token ratio: {self.tokens_counter[task_id] / (time.time() - task.inference_start_time)}"
|
|
)
|
|
llm_logger.info(f"{self.resource_manager.info()}")
|
|
llm_logger.info(
|
|
f"Speculate accept ratio: {1 - self.total_step * 1.0 / self.number_of_output_tokens}"
|
|
f" total step: {self.total_step}. total_output_token_num: {self.number_of_output_tokens}"
|
|
)
|
|
self._recycle_resources(task_id, i, task)
|
|
main_process_metrics.num_requests_running.dec(1)
|
|
main_process_metrics.request_inference_time.observe(
|
|
current_time - task.inference_start_time)
|
|
break
|
|
batch_result.append(result)
|
|
|
|
self.postprocess(batch_result)
|
|
|
|
|
|
class WarmUpTokenProcessor(TokenProcessor):
|
|
"""
|
|
Warmup Processor
|
|
"""
|
|
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
self._is_running = True
|
|
self._is_blocking = True
|
|
|
|
def postprocess(self, batch_result):
|
|
pass
|
|
|
|
def process_sampling_results(self):
|
|
"""
|
|
get output from model and process it
|
|
"""
|
|
from fastdeploy.model_executor.models import \
|
|
inference_runner_supported_models
|
|
if self.cfg.model_config.architectures not in inference_runner_supported_models \
|
|
and "ErnieMoEVLForCausalLM" not in self.cfg.model_config.architectures:
|
|
from paddlenlp_ops import get_output, speculate_get_output
|
|
else:
|
|
os.environ["ELLM_LOG_LEVEL"] = "3"
|
|
use_pip_eff_llm = os.getenv('USE_PIP_EFF_LLM')
|
|
if use_pip_eff_llm is None:
|
|
from fastdeploy.model_executor.ops.gpu import (
|
|
get_output, speculate_get_output)
|
|
else:
|
|
from efficientllm.ops.gpu import (get_output,
|
|
speculate_get_output)
|
|
|
|
while self._is_running:
|
|
try:
|
|
rank_id = 0
|
|
if self.is_speculate_decoding:
|
|
speculate_get_output(self.output_tokens, rank_id,
|
|
self._is_blocking)
|
|
else:
|
|
get_output(self.output_tokens, rank_id, self._is_blocking)
|
|
|
|
if self.output_tokens[0, 0] == -2:
|
|
continue
|
|
self._process_batch_output()
|
|
except Exception as e:
|
|
llm_logger.info("while get input_data error: {0} {1}".format(
|
|
e, str(traceback.format_exc())))
|
|
|
|
def stop(self):
|
|
"""
|
|
stop warm up thread
|
|
"""
|
|
self._is_running = False
|
|
self.worker.join()
|
|
llm_logger.info("warm up thread stop")
|
|
del self.worker
|