mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	 9205c88da1
			
		
	
	9205c88da1
	
	
		
			
	
		
	
	
		
			Some checks failed
		
		
	
	CE Compile Job / ce_job_pre_check (push) Has been cancelled
				
			CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
				
			CE Compile Job / FD-Clone-Linux (push) Has been cancelled
				
			CE Compile Job / Show Code Archive Output (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8090 (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8689 (push) Has been cancelled
				
			CE Compile Job / CE_UPLOAD (push) Has been cancelled
				
			Deploy GitHub Pages / deploy (push) Has been cancelled
				
			
		
			
				
	
	
		
			117 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from typing import Optional
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| import fastdeploy
 | |
| 
 | |
| from ..moe import FusedMoE
 | |
| from .quant_base import QuantConfigBase, QuantMethodBase
 | |
| 
 | |
| QUANT_SCALING_FACTOR = 448
 | |
| 
 | |
| 
 | |
| class W4AFP8Config(QuantConfigBase):
 | |
|     """
 | |
|     quantization config for weight 4bits and activation fp8
 | |
|     """
 | |
| 
 | |
|     def __init__(self, weight_scale_dict, act_scale_dict, is_permuted) -> None:
 | |
|         super().__init__()
 | |
|         self.weight_scale_dict = weight_scale_dict
 | |
|         self.act_scale_dict = act_scale_dict
 | |
|         self.quant_max_bound = 448
 | |
|         self.quant_min_bound = -448
 | |
|         self.quant_round_type = 1
 | |
|         self.is_permuted = is_permuted
 | |
| 
 | |
|     def name(self) -> str:
 | |
|         return "w4afp8"
 | |
| 
 | |
|     @classmethod
 | |
|     def from_config(cls, config: dict) -> "W4AFP8Config":
 | |
|         weight_scale_dict = config.get("weight_scale_dict", None)
 | |
|         act_scale_dict = config.get("act_scale_dict", None)
 | |
|         is_permuted = config.get("is_permuted", True)
 | |
|         return cls(weight_scale_dict, act_scale_dict, is_permuted)
 | |
| 
 | |
|     def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
 | |
|         if isinstance(layer, FusedMoE):
 | |
|             from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import (
 | |
|                 CutlassW4AFP8MoEMethod,
 | |
|             )
 | |
| 
 | |
|             return CutlassW4AFP8MoEMethod(self)
 | |
|         return W4AFP8LinearMethod(self)
 | |
| 
 | |
| 
 | |
| class W4AFP8LinearMethod(QuantMethodBase):
 | |
|     """
 | |
|     W4 AFP8 quant method for linear
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         quant_config: W4AFP8Config,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.quant_config = quant_config
 | |
| 
 | |
|     def create_weights(self, layer, **extra_weight_attrs):
 | |
|         layer.weight_shape.reverse()
 | |
|         layer.weight_shape[0] //= 2
 | |
|         layer.weight_dtype = "int8"
 | |
| 
 | |
|         layer.weight = layer.create_parameter(
 | |
|             shape=layer.weight_shape,
 | |
|             dtype=layer.weight_dtype,
 | |
|             is_bias=False,
 | |
|             default_initializer=paddle.nn.initializer.Constant(0),
 | |
|         )
 | |
| 
 | |
|     def process_loaded_weights(self, layer, weights) -> None:
 | |
|         (
 | |
|             quanted_weight_tensor,
 | |
|             weight_scale_tensor,
 | |
|         ) = fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16_weight_quantize(
 | |
|             paddle.cast(weights, "float32").cpu(),
 | |
|             groupsize=-1,
 | |
|             scale_dtype="float16",
 | |
|         )
 | |
|         weight_scale_tensor = paddle.view(weight_scale_tensor, layer._dtype)
 | |
|         layer.weight.set_value(quanted_weight_tensor)
 | |
|         layer.weight_scale.set_value(weight_scale_tensor)
 | |
| 
 | |
|     def apply(self, layer, x):
 | |
|         linear_out = fastdeploy.model_executor.ops.gpu.scaled_gemm_f8_i4_f16(
 | |
|             x,
 | |
|             layer.weight,
 | |
|             layer.weight_scale,
 | |
|             zero_points=None,
 | |
|             bias=layer.bias if layer.add_bias else None,
 | |
|             out_scale=self.quant_config.weight_scale_dict.get(layer.prefix + ".weight_scale")
 | |
|             / (
 | |
|                 self.quant_config.act_scale_dict.get(layer.prefix + ".activation_scale")
 | |
|                 * QUANT_SCALING_FACTOR
 | |
|                 * QUANT_SCALING_FACTOR
 | |
|             ),
 | |
|             groupsize=0,
 | |
|             out_dtype=layer._dtype,
 | |
|         )
 | |
|         return linear_out
 |