Files
FastDeploy/fastdeploy/runtime/backends/lite/option.h
DefTruth f73a538f61 [Backend] support bechmark mode for runtime and backend (#1201)
* [backend] support bechmark mode for runtime and backend

* [backend] support bechmark mode for runtime and backend

* [pybind11] add benchmark methods pybind

* [pybind11] add benchmark methods pybind

* [Other] Update build scripts

* [Other] Update cmake/summary.cmake

* [Other] update build scripts

* [Other] add ENABLE_BENCHMARK option -> setup.py

* optimize backend time recording

* optimize backend time recording

* optimize trt backend time record

* [backend] optimze backend_time recording for trt

* [benchmark] remove redundant logs

* fixed ov_backend confilct

* [benchmark] fixed paddle_backend conflicts

* [benchmark] fixed paddle_backend conflicts

* [benchmark] fixed paddle_backend conflicts

* [benchmark] remove use_gpu option from ort backend option

* [benchmark] update benchmark_ppdet.py

* [benchmark] update benchmark_ppcls.py

* fixed lite backend conflicts

* [Lite] fixed lite xpu

* add benchmark macro

* add RUNTIME_PROFILE_LOOP macros

* add comments for RUNTIME_PROFILE macros

* add comments for new apis

* add comments for new apis

* update benchmark_ppdet.py

* afixed bugs

* remove unused codes

* optimize RUNTIME_PROFILE_LOOP macros

* optimize RUNTIME_PROFILE_LOOP macros

* add comments for benchmark option and result

* add docs for benchmark namespace
2023-02-06 14:29:35 +08:00

84 lines
3.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_type.h"
// https://github.com/PaddlePaddle/Paddle-Lite/issues/8290
#if (defined(WITH_LITE_STATIC) && defined(WITH_STATIC_LIB))
// Whether to output some warning messages when using the
// FastDepoy static library, default OFF. These messages
// are only reserve for debugging.
#if defined(WITH_STATIC_WARNING)
#warning You are using the FastDeploy static library. \
We will automatically add some registration codes for \
ops, kernels and passes for Paddle Lite.
#endif
#if !defined(WITH_STATIC_LIB_AT_COMPILING)
#include "paddle_use_ops.h" // NOLINT
#include "paddle_use_kernels.h" // NOLINT
#include "paddle_use_passes.h" // NOLINT
#endif
#endif
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include <map>
namespace fastdeploy {
/*! Paddle Lite power mode for mobile device. */
enum LitePowerMode {
LITE_POWER_HIGH = 0, ///< Use Lite Backend with high power mode
LITE_POWER_LOW = 1, ///< Use Lite Backend with low power mode
LITE_POWER_FULL = 2, ///< Use Lite Backend with full power mode
LITE_POWER_NO_BIND = 3, ///< Use Lite Backend with no bind power mode
LITE_POWER_RAND_HIGH = 4, ///< Use Lite Backend with rand high mode
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
};
struct LiteBackendOption {
/// Paddle Lite power mode for mobile device.
LitePowerMode power_mode = LITE_POWER_NO_BIND;
/// Number of threads while use CPU
int cpu_threads = 1;
/// Enable use half precision
bool enable_fp16 = false;
/// Enable use int8 precision for quantized model
bool enable_int8 = false;
Device device = Device::CPU;
// optimized model dir for CxxConfig
std::string optimized_model_dir = "";
std::string nnadapter_subgraph_partition_config_path = "";
std::string nnadapter_subgraph_partition_config_buffer = "";
std::string nnadapter_context_properties = "";
std::string nnadapter_model_cache_dir = "";
std::string nnadapter_mixed_precision_quantization_config_path = "";
std::map<std::string, std::vector<std::vector<int64_t>>>
nnadapter_dynamic_shape_info = {{"", {{0}}}};
std::vector<std::string> nnadapter_device_names = {};
int device_id = 0;
int kunlunxin_l3_workspace_size = 0xfffc00;
bool kunlunxin_locked = false;
bool kunlunxin_autotune = true;
std::string kunlunxin_autotune_file = "";
std::string kunlunxin_precision = "int16";
bool kunlunxin_adaptive_seqlen = false;
bool kunlunxin_enable_multi_stream = false;
};
} // namespace fastdeploy