mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <memory>
 | |
| #include <vector>
 | |
| #include "fastdeploy/core/fd_tensor.h"
 | |
| #include "fastdeploy/utils/axis_utils.h"
 | |
| #include "unsupported/Eigen/CXX11/Tensor"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| // EigenDim converts shape into Eigen::DSizes.
 | |
| template <int D>
 | |
| struct EigenDim {
 | |
|   using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
 | |
| 
 | |
|   static Type From(const std::vector<int64_t>& dims) {
 | |
|     Type ret;
 | |
|     for (int64_t d = 0; d < dims.size(); d++) {
 | |
|       ret[d] = dims[d];
 | |
|     }
 | |
|     return ret;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Interpret FDTensor as EigenTensor and EigenConstTensor.
 | |
| template <typename T, size_t D, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| struct EigenTensor {
 | |
|   using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
 | |
| 
 | |
|   using ConstType =
 | |
|       Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
 | |
| 
 | |
|   static Type From(FDTensor& tensor,
 | |
|                    const std::vector<int64_t>& dims) {  // NOLINT
 | |
|     return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
 | |
|   }
 | |
| 
 | |
|   static Type From(FDTensor& tensor) {  // NOLINT
 | |
|     return From(tensor, tensor.shape);
 | |
|   }  // NOLINT
 | |
| 
 | |
|   static ConstType From(const FDTensor& tensor,
 | |
|                         const std::vector<int64_t>& dims) {
 | |
|     return ConstType(reinterpret_cast<const T*>(tensor.Data()),
 | |
|                      EigenDim<D>::From(dims));
 | |
|   }
 | |
| 
 | |
|   static ConstType From(const FDTensor& tensor) {
 | |
|     return From(tensor, tensor.shape);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| struct EigenScalar {
 | |
|   // Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
 | |
|   using Type = Eigen::TensorMap<
 | |
|       Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
 | |
|   using ConstType = Eigen::TensorMap<
 | |
|       Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
 | |
| 
 | |
|   static Type From(FDTensor& tensor) {
 | |
|     return Type(reinterpret_cast<T*>(tensor.Data()));
 | |
|   }  // NOLINT
 | |
| 
 | |
|   static ConstType From(const FDTensor& tensor) {
 | |
|     return ConstType(reinterpret_cast<const T*>(tensor.Data()));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
 | |
|   // Flatten reshapes a Tensor into an EigenVector.
 | |
|   static typename EigenVector::Type Flatten(FDTensor& tensor) {  // NOLINT
 | |
|     return EigenVector::From(tensor, {tensor.Numel()});
 | |
|   }
 | |
| 
 | |
|   static typename EigenVector::ConstType Flatten(
 | |
|       const FDTensor& tensor) {  // NOLINT
 | |
|     return EigenVector::From(tensor, {tensor.Numel()});
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
 | |
|   static typename EigenMatrix::Type Reshape(FDTensor& tensor,  // NOLINT
 | |
|                                             int num_col_dims) {
 | |
|     int rank = tensor.shape.size();
 | |
|     FDASSERT((num_col_dims > 0 && num_col_dims < rank),
 | |
|              "Input dimension number(num_col_dims) must be between 0 and %d, "
 | |
|              "but received number is %d.",
 | |
|              rank, num_col_dims);
 | |
|     const int n = SizeToAxis(num_col_dims, tensor.shape);
 | |
|     const int d = SizeFromAxis(num_col_dims, tensor.shape);
 | |
|     return EigenMatrix::From(tensor, {n, d});
 | |
|   }
 | |
| 
 | |
|   static typename EigenMatrix::ConstType Reshape(const FDTensor& tensor,
 | |
|                                                  int num_col_dims) {
 | |
|     int rank = tensor.shape.size();
 | |
|     FDASSERT((num_col_dims > 0 && num_col_dims < rank),
 | |
|              "Input dimension number(num_col_dims) must be between 0 and %d, "
 | |
|              "but received number is %d.",
 | |
|              rank, num_col_dims);
 | |
|     const int n = SizeToAxis(num_col_dims, tensor.shape);
 | |
|     const int d = SizeFromAxis(num_col_dims, tensor.shape);
 | |
|     return EigenMatrix::From(tensor, {n, d});
 | |
|   }
 | |
| };
 | |
| 
 | |
| class EigenDeviceWrapper {
 | |
|  public:
 | |
|   static std::shared_ptr<EigenDeviceWrapper> GetInstance();
 | |
|   const Eigen::DefaultDevice* GetDevice() const;
 | |
| 
 | |
|  private:
 | |
|   Eigen::DefaultDevice device_;
 | |
|   static std::shared_ptr<EigenDeviceWrapper> instance_;
 | |
| };
 | |
| 
 | |
| }  // namespace fastdeploy
 | 
