Files
FastDeploy/custom_ops/gpu_ops/quantization/common.cu
chen f38b174a75
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Fix noaux_tc cuda Error 700 in CUDAGraph and Add wfp8apf8 moe quant method (#4115)
* improve per_token_quant_fp8 performance

* support moe wfp8apf8

* check glm test

* fix noaux_tc op in cudagraph, support noaux_tc return the correct

* check

* check inf and overwrite score in noaux_tc

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-22 21:27:37 +08:00

427 lines
16 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// adapted from: https://github.com/vllm-project/vllm/blob/118ff921118cc81061a2af865a1e13840ceb6792/csrc/quantization/cutlass_w8a8/c3x/cutlass_gemm_caller.cuh
#include "quantization/common.cuh"
// adapted from: https://github.com/sgl-project/sglang/blob/v0.5.2rc2/sgl-kernel/csrc/gemm/per_token_quant_fp8.cu
// ---------------------------------------------------------------------------
// 1. Warplocal, no shared memory
// • One warp handles one token.
// • Eight tokens per 256thread CTA.
// ---------------------------------------------------------------------------
template <typename T, typename DST_DTYPE, int kTokensPerCTA = 8, int kVecSize = 16>
__global__ void per_token_quant_fp8_kernel(
const T* __restrict__ input,
DST_DTYPE* __restrict__ output_q,
float* __restrict__ output_s,
const float scale_ub,
const int64_t hidden_size,
const int64_t num_tokens) {
const int warp_id = threadIdx.x / WARP_SIZE; // 07 (8 warps)
const int lane_id = threadIdx.x & (WARP_SIZE - 1); // 031
const int token_id = blockIdx.x * kTokensPerCTA + warp_id;
if (token_id >= num_tokens) return;
// Global tensors for this token
const T* token_input = input + token_id * hidden_size;
DST_DTYPE* token_output = output_q + token_id * hidden_size;
float* token_scale = output_s + token_id;
//
// Pass-1: Perform a warp reduce to find the max_value of a token's hidden_size
//
float max_value = 0.f;
using vec_t = AlignedVector<T, kVecSize>;
const int32_t num_vec_elems = hidden_size / kVecSize;
for (int32_t i = lane_id; i < num_vec_elems; i += WARP_SIZE) {
vec_t input_vec;
Load(token_input + i * kVecSize, &input_vec);
#pragma unroll
for (uint32_t j = 0; j < kVecSize; ++j) {
max_value = fmaxf(max_value, fabsf(static_cast<float>(input_vec[j])));
}
}
float warp_max = warpReduceMax(max_value);
if (scale_ub > 0){
warp_max = fminf(warp_max, scale_ub);
}
float scale;
scale = warp_max / FP8_E4M3_MAX;
// Broadcast scale
if (lane_id == 0) {
token_scale[0] = scale;
}
float scale_inv = (scale == 0.f) ? 0.f : 1.0f / scale;
//
// Pass-2: quantize and write back
//
for (int i = lane_id; i < num_vec_elems; i += WARP_SIZE) {
vec_t input_vec;
Load(token_input + i * kVecSize, &input_vec);
DST_DTYPE output_arr[kVecSize];
#pragma unroll
for (uint32_t j = 0; j < kVecSize; ++j) {
float val = static_cast<float>(input_vec[j]) * scale_inv;
val = fmaxf(fminf(val, FP8_E4M3_MAX), -FP8_E4M3_MAX);
output_arr[j] = static_cast<DST_DTYPE>(val);
}
if constexpr (kVecSize == 16) {
*(uint4*)(token_output + i * kVecSize) = *(uint4*)output_arr;
} else {
// Use element-wise copy for vector size 8 to ensure correctness
for (int k = 0; k < kVecSize; ++k) {
token_output[i * kVecSize + k] = output_arr[k];
}
}
}
}
// ---------------------------------------------------------------------------
// 2. Baseline kernel (1 token / CTA, CUB block reduce)
// ---------------------------------------------------------------------------
template <typename T, typename DST_DTYPE, int kVecSize = 16>
__global__ void per_token_quant_fp8_small_batch_kernel(
const T* __restrict__ input,
DST_DTYPE* __restrict__ output_q,
float* __restrict__ output_s,
const float scale_ub,
const int64_t hidden_size,
const int64_t num_tokens) {
const int token_idx = blockIdx.x;
if (token_idx >= num_tokens) return;
const int tid = threadIdx.x;
const int block_dim = blockDim.x;
const T* token_input = input + token_idx * hidden_size;
DST_DTYPE* token_output = output_q + token_idx * hidden_size;
float max_value = 0.0f;
// Use template parameter for vector size
using vec_t = AlignedVector<T, kVecSize>;
const int32_t num_vec_elems = hidden_size / kVecSize;
// Find max using vectorized loads
for (int32_t i = tid; i < num_vec_elems; i += block_dim) {
vec_t input_vec;
Load(token_input + i * kVecSize, &input_vec);
#pragma unroll
for (uint32_t j = 0; j < kVecSize; ++j) {
float val = static_cast<float>(input_vec[j]);
max_value = fmaxf(max_value, fabsf(val));
}
}
max_value = blockReduceMax(max_value);
if (scale_ub > 0){
max_value = fminf(max_value, scale_ub);
}
__shared__ float scale;
if (tid == 0) {
scale = max_value / FP8_E4M3_MAX;
output_s[token_idx] = scale;
}
__syncthreads();
const float scale_inv = 1.0f / scale;
// Quantize using vectorized loads
for (int32_t i = tid; i < num_vec_elems; i += block_dim) {
vec_t input_vec;
Load(token_input + i * kVecSize, &input_vec);
DST_DTYPE output_arr[kVecSize];
#pragma unroll
for (uint32_t j = 0; j < kVecSize; ++j) {
float val = fmaxf(fminf(static_cast<float>(input_vec[j]) * scale_inv, FP8_E4M3_MAX), -FP8_E4M3_MAX);
output_arr[j] = static_cast<DST_DTYPE>(val);
}
if constexpr (kVecSize == 16) {
*(uint4*)(token_output + i * kVecSize) = *(uint4*)output_arr;
} else {
// Use element-wise copy for vector size 8 to ensure correctness
for (int k = 0; k < kVecSize; ++k) {
token_output[i * kVecSize + k] = output_arr[k];
}
}
}
}
namespace fastdeploy {
template <typename scalar_t, typename fp8_type>
__global__ void scaled_fp8_quant_kernel(fp8_type *__restrict__ out,
const scalar_t *__restrict__ input,
const float *__restrict__ scale,
int64_t num_elems) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
// Invert the scale so that we can use multiplications to avoid expensive
// division.
const float inverted_scale = 1.0f / (*scale);
scaled_fp8_conversion_vec<scalar_t, true>(
out, input, inverted_scale, num_elems, tid, blockDim.x * gridDim.x);
}
template <typename scalar_t, typename fp8_type>
__global__ void dynamic_per_token_scaled_fp8_quant_kernel(
fp8_type *__restrict__ out, float *__restrict__ scale,
scalar_t const *__restrict__ input, float scale_ub, const int hidden_size) {
int const tid = threadIdx.x;
int const token_idx = blockIdx.x;
// Use int64 to avoid overflowing an int32 when calculating this offset
int64_t offset = static_cast<int64_t>(token_idx) * hidden_size;
scalar_t const *__restrict__ token_input = &input[offset];
fp8_type *__restrict__ token_output = &out[offset];
// For vectorization, token_input and token_output pointers need to be
// aligned at 8-byte and 4-byte addresses respectively.
bool const can_vectorize = hidden_size % 4 == 0;
float absmax_val = 0.0f;
if (can_vectorize) {
absmax_val = thread_max_vec(token_input, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
float const x = static_cast<float>(token_input[i]);
absmax_val = max(absmax_val, fabs(x));
}
}
using BlockReduce = cub::BlockReduce<float, 1024>;
__shared__ typename BlockReduce::TempStorage reduceStorage;
float const block_absmax_val_maybe =
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
__shared__ float token_scale;
if (tid == 0) {
if (scale_ub > 0) {
token_scale = min(block_absmax_val_maybe, scale_ub);
} else {
token_scale = block_absmax_val_maybe;
}
// token scale computation
// token_scale = max(token_scale / 448.f,
// min_scaling_factor<fp8_type>::val());
token_scale = token_scale / 448.f;
scale[token_idx] = token_scale;
}
__syncthreads();
// Note that we don't use inverted scales so we can match FBGemm impl.
if (can_vectorize) {
scaled_fp8_conversion_vec<scalar_t, false>(
token_output, token_input, token_scale, hidden_size, tid, blockDim.x);
} else {
for (int i = tid; i < hidden_size; i += blockDim.x) {
token_output[i] = scaled_fp8_conversion<false, fp8_type>(
static_cast<float>(token_input[i]), token_scale);
}
}
}
} // namespace fastdeploy
void StaticScaledFp8Quant(paddle::Tensor &out, // [..., d]
paddle::Tensor const &input, // [..., d]
paddle::Tensor const &scale) // [1]
{
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
using fp8_t = phi::dtype::float8_e4m3fn;
auto rank = input.dims().size();
int64_t num_tokens = input.numel() / input.dims()[rank - 1];
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
cudaStream_t stream = input.stream();
switch (input.dtype()) {
case paddle::DataType::FLOAT32: {
using scalar_t = float;
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
case paddle::DataType::FLOAT16: {
using scalar_t = phi::dtype::float16;
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
case paddle::DataType::BFLOAT16: {
using scalar_t = phi::dtype::bfloat16;
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
default:
PD_THROW("Only supported attr of input type in [fp32, fp16, bf16].");
}
}
void DynamicScaledFp8Quant(paddle::Tensor &out, // [..., d]
paddle::Tensor const &input, // [..., d]
paddle::Tensor &scale) // [1]
{
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
using fp8_t = phi::dtype::float8_e4m3fn;
auto rank = input.dims().size();
int64_t num_tokens = input.numel() / input.dims()[rank - 1];
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
cudaStream_t stream = input.stream();
switch (input.dtype()) {
case paddle::DataType::FLOAT32: {
using scalar_t = float;
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(scale.data<float>(),
input.data<scalar_t>(), num_elems);
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
case paddle::DataType::FLOAT16: {
using scalar_t = phi::dtype::float16;
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(scale.data<float>(),
input.data<scalar_t>(), num_elems);
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
case paddle::DataType::BFLOAT16: {
using scalar_t = phi::dtype::bfloat16;
fastdeploy::segmented_max_reduction<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(scale.data<float>(),
input.data<scalar_t>(), num_elems);
fastdeploy::scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), input.data<scalar_t>(),
scale.data<float>(), num_elems);
break;
}
default:
PD_THROW("Only supported attr of input type in [fp32, fp16, bf16].");
}
}
void DynamicPerTokenScaledFp8Quant(paddle::Tensor &out, // [..., d]
paddle::Tensor const &input, // [..., d]
paddle::Tensor &scales, float scale_ub) {
PD_CHECK(input.is_contiguous());
PD_CHECK(out.is_contiguous());
PD_CHECK(out.dtype() == paddle::DataType::FLOAT8_E4M3FN);
using fp8_t = phi::dtype::float8_e4m3fn;
auto rank = input.dims().size();
int const hidden_size = input.dims()[rank - 1];
int const num_tokens = input.numel() / hidden_size;
cudaStream_t stream = input.stream();
if (hidden_size % 8 == 0){
int device = 0;
cudaGetDevice(&device);
int sm_count = 0;
cudaDeviceGetAttribute(&sm_count, cudaDevAttrMultiProcessorCount, device);
const int TOKENS_PER_CTA = 8;
const bool use_warp_kernel = (num_tokens >= sm_count * 2 * TOKENS_PER_CTA);
const bool use_vec16 = (hidden_size % 16 == 0);
DISPATCH_FLOAT_FP6_DTYPE(input.dtype(), scalar_t, {
if (use_warp_kernel) {
// -------- warplocal ---------------------------------------------------
constexpr int THREADS = TOKENS_PER_CTA * WARP_SIZE; // 256
dim3 grid((num_tokens + TOKENS_PER_CTA - 1) / TOKENS_PER_CTA);
dim3 block(THREADS);
if (use_vec16) {
per_token_quant_fp8_kernel<scalar_t, __nv_fp8_e4m3, TOKENS_PER_CTA, 16><<<grid, block, 0, stream>>>(
reinterpret_cast<const scalar_t*>(input.data<scalar_t>()),
reinterpret_cast<__nv_fp8_e4m3*>(out.data<fp8_t>()),
reinterpret_cast<float*>(scales.data<float>()),
scale_ub,
hidden_size,
num_tokens);
} else {
per_token_quant_fp8_kernel<scalar_t, __nv_fp8_e4m3, TOKENS_PER_CTA, 8><<<grid, block, 0, stream>>>(
reinterpret_cast<const scalar_t*>(input.data<scalar_t>()),
reinterpret_cast<__nv_fp8_e4m3*>(out.data<fp8_t>()),
reinterpret_cast<float*>(scales.data<float>()),
scale_ub,
hidden_size,
num_tokens);
}
} else {
// -------- baseline -----------------------------------------------------
constexpr int THREADS = 256;
dim3 grid(num_tokens);
dim3 block(THREADS);
if (use_vec16) {
per_token_quant_fp8_small_batch_kernel<scalar_t, __nv_fp8_e4m3, 16><<<grid, block, 0, stream>>>(
reinterpret_cast<const scalar_t*>(input.data<scalar_t>()),
reinterpret_cast<__nv_fp8_e4m3*>(out.data<fp8_t>()),
reinterpret_cast<float*>(scales.data<float>()),
scale_ub,
hidden_size,
num_tokens);
} else {
per_token_quant_fp8_small_batch_kernel<scalar_t, __nv_fp8_e4m3, 8><<<grid, block, 0, stream>>>(
reinterpret_cast<const scalar_t*>(input.data<scalar_t>()),
reinterpret_cast<__nv_fp8_e4m3*>(out.data<fp8_t>()),
reinterpret_cast<float*>(scales.data<float>()),
scale_ub,
hidden_size,
num_tokens);
}
}
});
return;
}
dim3 const grid(num_tokens);
dim3 const block(std::min(hidden_size, 1024));
DISPATCH_FLOAT_FP6_DTYPE(input.dtype(), scalar_t, {
fastdeploy::dynamic_per_token_scaled_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(out.data<fp8_t>(), scales.data<float>(),
input.data<scalar_t>(), scale_ub,
hidden_size);
});
}
PD_BUILD_STATIC_OP(static_scaled_fp8_quant)
.Inputs({"out", "input", "scale"})
.Outputs({"out_q"})
.SetInplaceMap({{"out", "out_q"}})
.SetKernelFn(PD_KERNEL(StaticScaledFp8Quant));
PD_BUILD_STATIC_OP(dynamic_scaled_fp8_quant)
.Inputs({"out", "input", "scale"})
.Outputs({"out_q", "out_scale"})
.SetInplaceMap({{"out", "out_q"},
{"scale", "out_scale"}})
.SetKernelFn(PD_KERNEL(DynamicScaledFp8Quant));
PD_BUILD_STATIC_OP(dynamic_per_token_scaled_fp8_quant)
.Inputs({"out", "input", "scale"})
.Attrs({"scale_ub: float"})
.Outputs({"out_q"})
.SetInplaceMap({{"out", "out_q"}})
.SetKernelFn(PD_KERNEL(DynamicPerTokenScaledFp8Quant));