Files
FastDeploy/tests/pooling/test_Qwen3-Embedding_serving.py
lizexu123 b0cf2c4b7a [Feature] Support prefill batch inference for pooling models. (#5436)
* fix multi-inputs

* fix threshold

* fix threshold

* fix

* support multi-batch

* add tests

* fix test

* test

* fix
2025-12-09 16:21:00 +08:00

338 lines
12 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import signal
import subprocess
import sys
import time
from typing import List
import numpy as np
import pytest
import requests
from e2e.utils.serving_utils import (
FD_API_PORT,
FD_CACHE_QUEUE_PORT,
FD_ENGINE_QUEUE_PORT,
FD_METRICS_PORT,
clean_ports,
is_port_open,
)
from fastdeploy import envs
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_embedding_server():
"""
Start embedding model API server for testing.
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "torch", "Qwen3-Embedding-0.6B")
else:
model_path = "./Qwen3-Embedding-0.6B"
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model path not found: {model_path}")
envs.FD_ENABLE_MAX_PREFILL = 1
log_path = "embedding_server.log"
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(FD_API_PORT),
"--tensor-parallel-size",
"2",
"--engine-worker-queue-port",
str(FD_ENGINE_QUEUE_PORT),
"--metrics-port",
str(FD_METRICS_PORT),
"--cache-queue-port",
str(FD_CACHE_QUEUE_PORT),
"--max-model-len",
"8192",
"--max-num-seqs",
"256",
"--runner",
"pooling",
]
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True,
)
# Wait for server to start (up to 480 seconds)
for _ in range(480):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"Embedding API server is up on port {FD_API_PORT}")
break
time.sleep(1)
else:
print("Embedding API server failed to start. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print(f"Failed to kill process group: {e}")
raise RuntimeError(f"Embedding API server did not start on port {FD_API_PORT}")
yield
print("\n===== Post-test embedding server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"Embedding API server (pid={process.pid}) terminated")
except Exception as e:
print(f"Failed to terminate embedding API server: {e}")
@pytest.fixture(scope="session")
def embedding_api_url():
"""Returns the API endpoint URL for embeddings."""
return f"http://0.0.0.0:{FD_API_PORT}/v1/embeddings"
@pytest.fixture
def headers():
"""Returns common HTTP request headers."""
return {"Content-Type": "application/json"}
# ==========================
# Test Cases
# ==========================
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [
{
"role": "user",
"content": "北京天安门在哪里?",
}
],
}
def save_embedding_baseline(embedding: List[float], baseline_file: str):
"""
Save embedding vector to baseline file.
"""
baseline_data = {"embedding": embedding, "dimension": len(embedding)}
with open(baseline_file, "w", encoding="utf-8") as f:
json.dump(baseline_data, f, indent=2)
print(f"Baseline saved to: {baseline_file}")
def compare_embeddings(embedding1: List[float], embedding2: List[float], threshold: float = 0.01) -> float:
"""
Compare two embedding vectors using mean absolute difference.
Returns:
mean_abs_diff: mean absolute difference between two embeddings
"""
arr1 = np.array(embedding1, dtype=np.float32)
arr2 = np.array(embedding2, dtype=np.float32)
# Mean absolute difference
mean_abs_diff = np.mean(np.abs(arr1 - arr2))
print(f"Mean Absolute Difference: {mean_abs_diff:.6f}")
return mean_abs_diff
def check_embedding_against_baseline(embedding: List[float], baseline_file: str, threshold: float = 0.01):
"""
Check embedding against baseline file.
Args:
embedding: Current embedding vector
baseline_file: Path to baseline file
threshold: Maximum allowed difference rate (1 - cosine_similarity)
"""
try:
with open(baseline_file, "r", encoding="utf-8") as f:
baseline_data = json.load(f)
baseline_embedding = baseline_data["embedding"]
except FileNotFoundError:
raise AssertionError(f"Baseline file not found: {baseline_file}")
if len(embedding) != len(baseline_embedding):
raise AssertionError(
f"Embedding dimension mismatch: current={len(embedding)}, baseline={len(baseline_embedding)}"
)
mean_abs_diff = compare_embeddings(embedding, baseline_embedding, threshold)
if mean_abs_diff >= threshold:
# Save current embedding for debugging
temp_file = f"{baseline_file}.current"
save_embedding_baseline(embedding, temp_file)
raise AssertionError(
f"Embedding differs from baseline by too much (mean_abs_diff={mean_abs_diff:.6f} >= {threshold}):\n"
f"Current embedding saved to: {temp_file}\n"
f"Please check the differences."
)
def test_single_text_embedding(embedding_api_url, headers):
"""Test embedding generation for a single text input."""
payload = {
"input": "北京天安门在哪里?",
"model": "Qwen3-Embedding-0.6B",
}
resp = requests.post(embedding_api_url, headers=headers, json=payload)
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
result = resp.json()
assert "data" in result, "Response missing 'data' field"
assert len(result["data"]) == 1, "Expected single embedding result"
embedding = result["data"][0]["embedding"]
assert isinstance(embedding, list), "Embedding should be a list"
assert len(embedding) > 0, "Embedding vector should not be empty"
assert all(isinstance(x, (int, float)) for x in embedding), "Embedding values should be numeric"
print(f"Single text embedding dimension: {len(embedding)}")
base_path = os.getenv("MODEL_PATH", "")
baseline_filename = "test-Qwen3-Embedding-0.6B-baseline.json"
if base_path:
baseline_file = os.path.join(base_path, "torch", baseline_filename)
else:
baseline_file = baseline_filename
if not os.path.exists(baseline_file):
print("Baseline file not found. Saving current embedding as baseline...")
save_embedding_baseline(embedding, baseline_file)
else:
print(f"Comparing with baseline: {baseline_file}")
check_embedding_against_baseline(embedding, baseline_file, threshold=0.02)
def test_multi_text_embedding(embedding_api_url, headers):
"""Test embedding generation for batch text inputs."""
payload = {
"model": "default",
"input": ["北京天安门在哪里?", "上海东方明珠有多高?", "杭州西湖的面积是多少?"],
}
resp = requests.post(embedding_api_url, headers=headers, json=payload)
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}, response: {resp.text}"
result = resp.json()
assert "data" in result, "Response missing 'data' field"
assert len(result["data"]) == 3, f"Expected 3 embedding results, got {len(result['data'])}"
# Validate each embedding in the batch
for idx, item in enumerate(result["data"]):
assert "embedding" in item, f"Item {idx} missing 'embedding' field"
assert "index" in item, f"Item {idx} missing 'index' field"
assert item["index"] == idx, f"Item index mismatch: expected {idx}, got {item['index']}"
embedding = item["embedding"]
assert isinstance(embedding, list), f"Embedding {idx} should be a list"
assert len(embedding) > 0, f"Embedding {idx} vector should not be empty"
assert all(isinstance(x, (int, float)) for x in embedding), f"Embedding {idx} values should be numeric"
print(f"Text {idx} embedding dimension: {len(embedding)}")
# Verify all embeddings have the same dimension
dimensions = [len(item["embedding"]) for item in result["data"]]
assert len(set(dimensions)) == 1, f"All embeddings should have same dimension, got: {dimensions}"
# Compare embeddings with baseline
base_path = os.getenv("MODEL_PATH", "")
baseline_filename = "test-Qwen3-Embedding-0.6B-multi-input-baseline.json"
if base_path:
baseline_file = os.path.join(base_path, "torch", baseline_filename)
else:
baseline_file = baseline_filename
# Save all embeddings to baseline
batch_embeddings = [item["embedding"] for item in result["data"]]
if not os.path.exists(baseline_file):
print("Batch baseline file not found. Saving current embeddings as baseline...")
baseline_data = {
"embeddings": batch_embeddings,
"dimension": len(batch_embeddings[0]),
"count": len(batch_embeddings),
"inputs": payload["input"],
}
with open(baseline_file, "w", encoding="utf-8") as f:
json.dump(baseline_data, f, indent=2)
print(f"Batch baseline saved to: {baseline_file}")
else:
print(f"Comparing batch with baseline: {baseline_file}")
with open(baseline_file, "r", encoding="utf-8") as f:
baseline_data = json.load(f)
baseline_embeddings = baseline_data["embeddings"]
assert len(batch_embeddings) == len(
baseline_embeddings
), f"Embedding count mismatch: current={len(batch_embeddings)}, baseline={len(baseline_embeddings)}"
# Compare each embedding
for idx, (current_emb, baseline_emb) in enumerate(zip(batch_embeddings, baseline_embeddings)):
print(f"\n--- Comparing embedding {idx}: '{payload['input'][idx]}' ---")
mean_abs_diff = compare_embeddings(current_emb, baseline_emb, threshold=0.05)
if mean_abs_diff >= 0.05:
# Save current batch for debugging
temp_file = f"{baseline_file}.current"
print("temp_file", temp_file)
with open(temp_file, "w", encoding="utf-8") as f:
json.dump(
{
"embeddings": batch_embeddings,
"dimension": len(batch_embeddings[0]),
"count": len(batch_embeddings),
"inputs": payload["input"],
},
f,
indent=2,
)
raise AssertionError(
f"Embedding {idx} differs from baseline by too much "
f"(mean_abs_diff={mean_abs_diff:.6f} >= 0.01):\n"
f"Current batch saved to: {temp_file}\n"
f"Please check the differences."
)