Files
FastDeploy/tests/output/test_process_batch_draft_tokens.py
SunLei c424e08dc5 [Speculative Decoding] split draft_tokens into standalone post-processing path (#5205)
* refactor(mtp): split draft_tokens into standalone post-processing path for MTP + logprobs

* Restore Request.__repr__ implementation

* ci

* add envs

* fix unittest
2025-11-27 11:22:41 +08:00

158 lines
5.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import MagicMock
import numpy as np
import paddle
from fastdeploy.engine.request import RequestOutput
from fastdeploy.output.token_processor import TokenProcessor
class TestProcessBatchDraftTokens(unittest.TestCase):
def setUp(self):
# 模拟 cfg
cfg = MagicMock()
cfg.speculative_config = MagicMock()
cfg.speculative_config.method = "mtp"
cfg.speculative_config.num_speculative_tokens = 3
cfg.model_config = MagicMock()
cfg.model_config.enable_logprob = True
self.processor = TokenProcessor(
cfg=cfg, cached_generated_tokens=MagicMock(), engine_worker_queue=MagicMock(), split_connector=MagicMock()
)
# mock resource_manager
self.processor.resource_manager = MagicMock()
self.processor.resource_manager.stop_flags = [False] * 512
self.processor.resource_manager.tasks_list = [MagicMock()] * 512
for task in self.processor.resource_manager.tasks_list:
task.request_id = "test_request"
task.eos_token_ids = [2]
def test_process_batch_draft_tokens_normal_case(self):
"""测试正常情况下的target处理"""
batch = 2
accept_num = [3, 2]
K = 20
MAX_DRAFT_TOKENS = 6
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
results = self.processor._process_batch_draft_tokens(
mtype=4,
batch=batch,
accept_num=accept_num,
tokens=paddle.to_tensor(tokens),
scores=paddle.to_tensor(scores),
ranks=paddle.to_tensor(ranks),
)
self.assertEqual(len(results), batch)
for i, result in enumerate(results):
self.assertIsInstance(result, RequestOutput)
self.assertEqual(result.output_type, 4)
self.assertEqual(result.outputs.index, i)
self.assertEqual(len(result.outputs.draft_top_logprobs.logprob_token_ids), accept_num[i])
self.assertEqual(len(result.outputs.draft_top_logprobs.logprobs), accept_num[i])
self.assertEqual(len(result.outputs.draft_top_logprobs.sampled_token_ranks), accept_num[i])
def test_process_batch_draft_tokens_with_stop_flag(self):
"""测试有停止标志的情况"""
batch = 3
self.processor.resource_manager.stop_flags[1] = True # 第二个 request 停止
accept_num = [3, 2, 1]
K = 20
MAX_DRAFT_TOKENS = 6
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
results = self.processor._process_batch_draft_tokens(
mtype=4,
batch=batch,
accept_num=accept_num,
tokens=paddle.to_tensor(tokens),
scores=paddle.to_tensor(scores),
ranks=paddle.to_tensor(ranks),
)
self.assertEqual(len(results), 2)
self.assertEqual(results[0].outputs.index, 0)
self.assertEqual(results[1].outputs.index, 2)
def test_process_batch_draft_tokens_empty_accept(self):
"""测试 accept_num 为 0 的情况"""
batch = 2
accept_num = [0, 0]
K = 20
MAX_DRAFT_TOKENS = 6
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
results = self.processor._process_batch_draft_tokens(
mtype=4,
batch=batch,
accept_num=accept_num,
tokens=paddle.to_tensor(tokens),
scores=paddle.to_tensor(scores),
ranks=paddle.to_tensor(ranks),
)
self.assertEqual(len(results), batch)
for result in results:
self.assertIsNone(result.outputs.draft_top_logprobs)
def test_process_batch_draft_tokens_different_k_values(self):
"""测试不同 K 值情况"""
batch = 2
accept_num = [3, 2]
K = 5
MAX_DRAFT_TOKENS = 6
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
results = self.processor._process_batch_draft_tokens(
mtype=4,
batch=batch,
accept_num=accept_num,
tokens=paddle.to_tensor(tokens),
scores=paddle.to_tensor(scores),
ranks=paddle.to_tensor(ranks),
)
self.assertEqual(len(results), batch)
for i, result in enumerate(results):
self.assertEqual(len(result.outputs.draft_top_logprobs.logprob_token_ids[0]), K + 1)
self.assertEqual(len(result.outputs.draft_top_logprobs.logprobs[0]), K + 1)
if __name__ == "__main__":
unittest.main()