Files
FastDeploy/fastdeploy/function/reduce.cc
Jason f2fed7959b [Other] Add namespace for functions (#538)
Add namespace for functions
2022-11-09 13:57:53 +08:00

407 lines
15 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/reduce.h"
#include <limits>
#include <set>
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/reduce_functor.h"
#include "fastdeploy/function/transpose.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
namespace function {
template <typename T, size_t D, size_t R_D, typename Functor>
void ReduceFunctor(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
auto x = EigenTensor<T, D>::From(input);
auto x_rank = static_cast<int>(x.dimensions().size());
auto reduce_dim = Eigen::array<int, R_D>();
std::vector<int64_t> dims_ref = dims;
auto out_dims = input.shape;
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
reduce_dim[i] = dims_ref[i];
out_dims[dims_ref[i]] = 1;
}
auto origin_output_dims = out_dims;
output->Allocate(origin_output_dims, TypeToDataType<T>::dtype);
// construct the squeezed output tensor
if (x_rank > 1) {
const int kDelFlag = -2;
for (size_t i = 0; i < dims_ref.size(); ++i) {
out_dims[dims_ref[i]] = kDelFlag;
}
out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
out_dims.end());
}
auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
Functor functor;
if (D == 1) {
auto out = EigenScalar<T>::From(*output);
functor(place, &x, &out, reduce_dim);
} else {
auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
functor(place, &x, &out, reduce_dim);
if (!keep_dim) {
output->shape = std::move(out_dims);
}
}
}
#define HANDLE_REDUCE_DIM(NDIM, RDIM) \
if (ndim == NDIM && rdim == RDIM) { \
ReduceFunctor<OutT, NDIM, RDIM, Functor>(input, output, dims, keep_dim); \
}
inline void GetShuffledDim(const std::vector<int64_t>& src_dims,
std::vector<int64_t>* dst_dims,
const std::vector<int64_t>& reduced_dims,
std::vector<int64_t>* perm_axis) {
// check if it's a reduced dim
std::vector<bool> src_dims_check(src_dims.size(), false);
size_t src_size = src_dims.size();
size_t reduce_size = reduced_dims.size();
std::vector<int64_t> regular_reduced_dims = reduced_dims;
for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
if (regular_reduced_dims[i] < 0) {
regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
}
}
for (size_t i = 0; i < reduce_size; ++i) {
dst_dims->at(src_size - reduce_size + i) =
src_dims[regular_reduced_dims[i]];
(*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
src_dims_check[regular_reduced_dims[i]] = true;
}
size_t offset = 0;
for (size_t i = 0; i < src_dims_check.size(); ++i) {
bool is_reduced = src_dims_check[i];
if (!is_reduced) {
(*perm_axis)[offset] = i;
dst_dims->at(offset++) = src_dims[i];
}
}
}
template <typename OutT>
void GetShuffledInput(const FDTensor& input, FDTensor* shuffled_input,
const std::vector<int64_t>& dims) {
auto shuffled_dims = input.shape;
std::vector<int64_t> perm_axis(input.shape.size());
GetShuffledDim(input.shape, &shuffled_dims, dims, &perm_axis);
shuffled_input->Allocate(shuffled_dims, input.dtype);
Transpose(input, shuffled_input, perm_axis);
}
//////////////// HandleLargeDim
template <typename OutT, typename Functor>
void HandleLargeDim(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
auto out_dims = input.shape;
std::vector<int64_t> dims_ref = dims;
auto x_rank = input.shape.size();
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
out_dims[dims_ref[i]] = 1;
}
if (!keep_dim) {
const int kDelFlag = -2;
for (size_t i = 0; i < dims_ref.size(); ++i) {
out_dims[dims_ref[i]] = kDelFlag;
}
out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
out_dims.end());
}
output->Allocate(out_dims, TypeToDataType<OutT>::dtype);
// shuffle the reduced dim to the end
FDTensor shuffled_input;
GetShuffledInput<OutT>(input, &shuffled_input, dims);
// transpose to 2D tensor whose shape is {unreduced, reduced}.
const int64_t unreduced = output->Numel();
const int64_t reduced = shuffled_input.Numel() / unreduced;
shuffled_input.Allocate({unreduced, reduced}, TypeToDataType<OutT>::dtype);
output->shape = {unreduced};
ReduceFunctor<OutT, 2, 1, Functor>(shuffled_input, output, {1}, keep_dim);
output->shape = out_dims;
}
////////////// ReduceKernel
template <typename OutT, typename Functor>
void ReduceKernelImpl(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim,
bool reduce_all) {
output->Allocate({1}, TypeToDataType<OutT>::dtype);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
if (reduce_all) {
// Flatten and reduce 1-D tensor
auto x = EigenVector<OutT>::Flatten(input);
auto out = EigenScalar<OutT>::From(*output);
auto reduce_dim = Eigen::array<int, 1>({{0}});
Functor functor;
functor(dev, &x, &out, reduce_dim);
} else {
int ndim = input.shape.size();
int rdim = dims.size();
if (ndim > 4) {
HandleLargeDim<OutT, Functor>(input, output, dims, keep_dim);
} else {
HANDLE_REDUCE_DIM(4, 3);
HANDLE_REDUCE_DIM(4, 2);
HANDLE_REDUCE_DIM(4, 1);
HANDLE_REDUCE_DIM(3, 2);
HANDLE_REDUCE_DIM(3, 1);
HANDLE_REDUCE_DIM(2, 1);
HANDLE_REDUCE_DIM(1, 1);
}
}
}
template <typename OutT, typename Functor>
void BoolReduceKernel(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim,
bool reduce_all) {
// The dims has full dim, set the reduce_all is True
const auto& input_dim_size = input.shape.size();
std::set<int> dims_set(dims.begin(), dims.end());
bool full_dim = true;
for (auto i = 0; i < input_dim_size; i++) {
if (dims_set.find(i) == dims_set.end()) {
full_dim = false;
break;
}
}
reduce_all = (reduce_all || full_dim);
ReduceKernelImpl<bool, Functor>(input, output, dims, keep_dim, reduce_all);
}
template <typename Functor>
void Reduce(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
// If the dims has full dim, set the reduce_all is True
const int& input_dim_size = x.shape.size();
std::set<int> dims_set(dims.begin(), dims.end());
bool full_dim = true;
for (int i = 0; i < input_dim_size; ++i) {
if (dims_set.find(i) == dims_set.end() &&
dims_set.find(i - input_dim_size) == dims_set.end()) {
full_dim = false;
break;
}
}
reduce_all = (reduce_all || full_dim);
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ReduceKernelImpl", ([&] {
ReduceKernelImpl<data_t, Functor>(
x, out, dims, keep_dim, reduce_all);
}));
}
enum ArgMinMaxType { kArgMin, kArgMax };
template <typename T, typename Tout, int64_t Rank, ArgMinMaxType argMinMaxValue>
struct ArgMinMaxFunctor {};
#define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \
template <typename T, typename Tout, int64_t Rank> \
struct ArgMinMaxFunctor<T, Tout, Rank, enum_argminmax_value> { \
void operator()(const FDTensor& in, FDTensor* out, \
const std::vector<int64_t>& x_dims, int64_t axis, \
bool keepdims, bool flatten) { \
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice(); \
auto in_eigen = EigenTensor<T, Rank>::From(in, x_dims); \
if (keepdims) { \
if (!flatten) { \
auto out_eigen = EigenTensor<Tout, Rank>::From(*out); \
out_eigen.device(dev) = \
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
} else { \
auto out_eigen = EigenScalar<Tout>::From(*out); \
out_eigen.device(dev) = \
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
} \
} else { \
auto out_eigen = EigenTensor<Tout, Rank - 1>::From(*out); \
out_eigen.device(dev) = \
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
} \
} \
}
DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin);
DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax);
template <typename T, typename Tout, ArgMinMaxType EnumArgMinMaxValue>
void ArgMinMaxKernel(const FDTensor& x, FDTensor* out, int64_t axis,
bool keepdims, bool flatten) {
bool new_keepdims = keepdims | flatten;
// if flatten, will construct the new dims for the cacluate
std::vector<int64_t> x_dims;
int new_axis = axis;
if (flatten) {
x_dims = {x.Numel()};
// if flatten, the axis just as 0
new_axis = 0;
} else {
x_dims = x.shape;
if (axis < 0) new_axis = axis + x_dims.size();
}
#define CALL_ARG_MINMAX_FUNCTOR(rank) \
ArgMinMaxFunctor<T, Tout, rank, EnumArgMinMaxValue> functor##rank; \
functor##rank(x, out, x_dims, new_axis, new_keepdims, flatten)
switch (x_dims.size()) {
case 1:
CALL_ARG_MINMAX_FUNCTOR(1);
break;
case 2:
CALL_ARG_MINMAX_FUNCTOR(2);
break;
case 3:
CALL_ARG_MINMAX_FUNCTOR(3);
break;
case 4:
CALL_ARG_MINMAX_FUNCTOR(4);
break;
case 5:
CALL_ARG_MINMAX_FUNCTOR(5);
break;
case 6:
CALL_ARG_MINMAX_FUNCTOR(6);
break;
default:
FDASSERT(x_dims.size() <= 6,
"%s operator doesn't supports tensors whose ranks are greater "
"than 6.",
(EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"));
break;
#undef CALL_ARG_MINMAX_FUNCTOR
}
}
template <typename T, ArgMinMaxType EnumArgMinMaxValue>
void ArgMinMax(const FDTensor& x, FDTensor* out, int64_t axis,
FDDataType output_dtype, bool keepdims, bool flatten) {
const auto& x_dims = x.shape;
int64_t x_rank = x_dims.size();
FDASSERT(axis >= -x_rank,
"'axis'(%lld) must be greater than or equal to -Rank(X)(%lld).",
axis, -x_rank);
FDASSERT(axis < x_rank,
"'axis'(%lld) must be less than or equal to Rank(X)(%lld).", axis,
x_rank);
FDASSERT(output_dtype == FDDataType::INT32 || FDDataType::INT64,
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
"received [%s].",
Str(FDDataType::INT32).c_str(), Str(FDDataType::INT64).c_str(),
Str(output_dtype).c_str());
if (axis < 0) axis += x_rank;
if (output_dtype == FDDataType::INT32) {
int64_t all_element_num = 0;
if (flatten) {
all_element_num = x.Numel();
} else {
all_element_num = x_dims[axis];
}
FDASSERT(all_element_num <= (std::numeric_limits<int>::max)(),
"The element num of the argmin/argmax input at axis is "
"%lld, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'.",
all_element_num, (std::numeric_limits<int>::max)());
}
std::vector<int64_t> vec;
if (flatten) {
vec.emplace_back(static_cast<int64_t>(1));
} else {
for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]);
if (keepdims) {
vec.emplace_back(static_cast<int64_t>(1));
}
for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]);
}
out->Allocate(vec, output_dtype);
FD_VISIT_INT_TYPES(output_dtype, "ArgMinMaxKernel", ([&] {
ArgMinMaxKernel<T, data_t, EnumArgMinMaxValue>(
x, out, axis, keepdims, flatten);
}));
}
void Max(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MaxFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Min(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MinFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Sum(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<SumFunctor>(x, out, dims, keep_dim, reduce_all);
}
void All(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
BoolReduceKernel<bool, AllFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Any(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
BoolReduceKernel<bool, AnyFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Mean(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MeanFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Prod(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<ProdFunctor>(x, out, dims, keep_dim, reduce_all);
}
void ArgMax(const FDTensor& x, FDTensor* out, int64_t axis,
FDDataType output_dtype, bool keep_dim, bool flatten) {
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
ArgMinMax<data_t, kArgMax>(
x, out, axis, output_dtype, keep_dim, flatten);
}));
}
void ArgMin(const FDTensor& x, FDTensor* out, int64_t axis,
FDDataType output_dtype, bool keep_dim, bool flatten) {
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
ArgMinMax<data_t, kArgMin>(
x, out, axis, output_dtype, keep_dim, flatten);
}));
}
} // namespace function
} // namespace fastdeploy