mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* Update config.py * fix * update unit test --------- Co-authored-by: ltd0924 <luotingdan@baidu.com>
301 lines
11 KiB
Python
301 lines
11 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from dataclasses import asdict
|
|
from types import SimpleNamespace
|
|
|
|
from fastdeploy.cache_manager.cache_data import BlockNode
|
|
from fastdeploy.cache_manager.prefix_cache_manager import PrefixCacheManager
|
|
from fastdeploy.config import CacheConfig, FDConfig, ParallelConfig
|
|
from fastdeploy.engine.args_utils import EngineArgs
|
|
from fastdeploy.engine.request import ImagePosition, Request
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
|
|
|
|
def make_prefix_cache_manager(max_num_seqs, enable_mm=False, num_gpu_blocks_override=100, max_num_batched_tokens=3200):
|
|
engine_args = EngineArgs(
|
|
max_num_seqs=max_num_seqs,
|
|
num_gpu_blocks_override=num_gpu_blocks_override,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=enable_mm, max_model_len=4196)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig(args)
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
speculative_config=speculative_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
return PrefixCacheManager(config=fd_config, tensor_parallel_size=8, splitwise_role="mixed")
|
|
|
|
|
|
class TestIsChunkedMMInput(unittest.TestCase):
|
|
def setUp(self):
|
|
self.cache_manager = make_prefix_cache_manager(max_num_seqs=3, enable_mm=True, num_gpu_blocks_override=100)
|
|
|
|
def test_is_chunked_mm_input_none_input(self):
|
|
result, idx = self.cache_manager.is_chunked_mm_input(None, 10)
|
|
self.assertFalse(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
def test_is_chunked_mm_input_no_mm_positions(self):
|
|
mm_inputs = {"other_field": "value"}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 10)
|
|
self.assertFalse(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
def test_is_chunked_mm_input_empty_positions(self):
|
|
mm_inputs = {"mm_positions": []}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 10)
|
|
self.assertFalse(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
def test_is_chunked_mm_input_matched_in_chunk(self):
|
|
mm_inputs = {
|
|
"mm_positions": [
|
|
ImagePosition(offset=5, length=10),
|
|
ImagePosition(offset=20, length=10),
|
|
]
|
|
}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 8)
|
|
self.assertTrue(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
def test_is_chunked_mm_input_matched_in_second_chunk(self):
|
|
mm_inputs = {
|
|
"mm_positions": [
|
|
ImagePosition(offset=5, length=10),
|
|
ImagePosition(offset=20, length=10),
|
|
]
|
|
}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 25)
|
|
self.assertTrue(result)
|
|
self.assertEqual(idx, 1)
|
|
|
|
def test_is_chunked_mm_input_before_first_chunk(self):
|
|
mm_inputs = {
|
|
"mm_positions": [
|
|
ImagePosition(offset=5, length=10),
|
|
ImagePosition(offset=20, length=10),
|
|
]
|
|
}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 3)
|
|
self.assertFalse(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
def test_is_chunked_mm_input_after_last_chunk(self):
|
|
mm_inputs = {
|
|
"mm_positions": [
|
|
ImagePosition(offset=5, length=10),
|
|
ImagePosition(offset=20, length=10),
|
|
]
|
|
}
|
|
result, idx = self.cache_manager.is_chunked_mm_input(mm_inputs, 35)
|
|
self.assertFalse(result)
|
|
self.assertEqual(idx, 0)
|
|
|
|
|
|
class TestRevertMatchBlocks(unittest.TestCase):
|
|
def setUp(self):
|
|
self.block_size = 64
|
|
self.cache_manager = make_prefix_cache_manager(max_num_seqs=3, enable_mm=True, num_gpu_blocks_override=100)
|
|
|
|
def make_match_blocks(self, gpu_block_num, cpu_block_num):
|
|
block_num = gpu_block_num + cpu_block_num
|
|
matched_token_num = block_num * self.block_size
|
|
match_node_ids = []
|
|
matche_nodes = []
|
|
match_gpu_block_ids = []
|
|
match_cpu_block_ids = []
|
|
for idx in range(block_num):
|
|
node_id = idx + 10
|
|
block = BlockNode(node_id, [], 0, 0, idx, 0, None, None, None)
|
|
match_node_ids.append(node_id)
|
|
matche_nodes.append(block)
|
|
match_gpu_block_ids.append(idx)
|
|
|
|
for _ in range(cpu_block_num):
|
|
match_cpu_block_ids.append(match_gpu_block_ids.pop())
|
|
|
|
gpu_match_token_num = len(match_gpu_block_ids) * self.block_size
|
|
cpu_match_token_num = len(match_cpu_block_ids) * self.block_size
|
|
return (
|
|
matched_token_num,
|
|
match_node_ids,
|
|
matche_nodes,
|
|
match_gpu_block_ids,
|
|
match_cpu_block_ids,
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
)
|
|
|
|
def test_revert_full_blocks(self):
|
|
# Setup test data
|
|
multimodal_inputs = {
|
|
"mm_positions": [ImagePosition(offset=0, length=1200)],
|
|
"mm_hashes": ["image1"],
|
|
}
|
|
req_dict = {
|
|
"request_id": "req1",
|
|
"prompt_token_ids": [-1] * 1200 + [2] * 120,
|
|
"prompt_token_ids_len": 1320,
|
|
"multimodal_inputs": multimodal_inputs,
|
|
}
|
|
|
|
(
|
|
matched_token_num,
|
|
match_node_ids,
|
|
matche_nodes,
|
|
match_gpu_block_ids,
|
|
match_cpu_block_ids,
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
) = self.make_match_blocks(gpu_block_num=2, cpu_block_num=0)
|
|
|
|
# Call method
|
|
(
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
current_match_node,
|
|
) = self.cache_manager._revert_match_blocks(
|
|
request=Request.from_dict(req_dict),
|
|
matched_token_num=matched_token_num,
|
|
block_size=self.block_size,
|
|
chunk_idx=0,
|
|
match_node_ids=match_node_ids,
|
|
matche_nodes=matche_nodes,
|
|
match_gpu_block_ids=match_gpu_block_ids,
|
|
match_cpu_block_ids=match_cpu_block_ids,
|
|
gpu_match_token_num=gpu_match_token_num,
|
|
cpu_match_token_num=cpu_match_token_num,
|
|
swap_node_ids=[],
|
|
)
|
|
|
|
# Assertions
|
|
self.assertEqual(gpu_match_token_num, 0)
|
|
self.assertEqual(cpu_match_token_num, 0)
|
|
self.assertEqual(len(match_node_ids), 0)
|
|
self.assertEqual(len(match_gpu_block_ids), 0)
|
|
|
|
def test_revert_partial_block(self):
|
|
# Setup test data
|
|
multimodal_inputs = {
|
|
"mm_positions": [ImagePosition(offset=120, length=1200)],
|
|
"mm_hashes": ["image1"],
|
|
}
|
|
req_dict = {
|
|
"request_id": "req1",
|
|
"prompt_token_ids": [1] * 120 + [-1] * 1200 + [2] * 120,
|
|
"prompt_token_ids_len": 1440,
|
|
"multimodal_inputs": multimodal_inputs,
|
|
}
|
|
|
|
(
|
|
matched_token_num,
|
|
match_node_ids,
|
|
matche_nodes,
|
|
match_gpu_block_ids,
|
|
match_cpu_block_ids,
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
) = self.make_match_blocks(gpu_block_num=20, cpu_block_num=0)
|
|
|
|
# Call method
|
|
(
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
current_match_node,
|
|
) = self.cache_manager._revert_match_blocks(
|
|
request=Request.from_dict(req_dict),
|
|
matched_token_num=matched_token_num,
|
|
block_size=self.block_size,
|
|
chunk_idx=0,
|
|
match_node_ids=match_node_ids,
|
|
matche_nodes=matche_nodes,
|
|
match_gpu_block_ids=match_gpu_block_ids,
|
|
match_cpu_block_ids=match_cpu_block_ids,
|
|
gpu_match_token_num=gpu_match_token_num,
|
|
cpu_match_token_num=cpu_match_token_num,
|
|
swap_node_ids=[],
|
|
)
|
|
|
|
# Assertions
|
|
self.assertEqual(gpu_match_token_num, 120)
|
|
self.assertEqual(cpu_match_token_num, 0)
|
|
self.assertEqual(len(match_node_ids), 2)
|
|
self.assertEqual(len(match_gpu_block_ids), 2)
|
|
|
|
def test_revert_with_cpu_blocks(self):
|
|
# Setup test data
|
|
multimodal_inputs = {
|
|
"mm_positions": [ImagePosition(offset=120, length=1200), ImagePosition(offset=1440, length=420)],
|
|
"mm_hashes": ["image1", "image2"],
|
|
}
|
|
req_dict = {
|
|
"request_id": "req1",
|
|
"prompt_token_ids": [1] * 120 + [-1] * 1200 + [2] * 120 + [-1] * 420,
|
|
"prompt_token_ids_len": 1860,
|
|
"multimodal_inputs": multimodal_inputs,
|
|
}
|
|
|
|
(
|
|
matched_token_num,
|
|
match_node_ids,
|
|
matche_nodes,
|
|
match_gpu_block_ids,
|
|
match_cpu_block_ids,
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
) = self.make_match_blocks(gpu_block_num=22, cpu_block_num=6)
|
|
|
|
# Call method
|
|
(
|
|
gpu_match_token_num,
|
|
cpu_match_token_num,
|
|
current_match_node,
|
|
) = self.cache_manager._revert_match_blocks(
|
|
request=Request.from_dict(req_dict),
|
|
matched_token_num=matched_token_num,
|
|
block_size=self.block_size,
|
|
chunk_idx=1,
|
|
match_node_ids=match_node_ids,
|
|
matche_nodes=matche_nodes,
|
|
match_gpu_block_ids=match_gpu_block_ids,
|
|
match_cpu_block_ids=match_cpu_block_ids,
|
|
gpu_match_token_num=gpu_match_token_num,
|
|
cpu_match_token_num=cpu_match_token_num,
|
|
swap_node_ids=[],
|
|
)
|
|
|
|
# Assertions
|
|
self.assertEqual(gpu_match_token_num, 22 * self.block_size)
|
|
self.assertEqual(cpu_match_token_num, 32)
|
|
self.assertEqual(len(match_node_ids), 23)
|
|
self.assertEqual(len(match_gpu_block_ids), 22)
|
|
self.assertEqual(len(match_cpu_block_ids), 1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|