Files
FastDeploy/tests/layers/test_native_paddle_backend.py
Echo-Nie ff653503ff [Docs] Add License in Unittest (#4957)
* add copyright

* add CopyRight
2025-11-12 10:44:09 +08:00

117 lines
3.9 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import Mock
import paddle
from fastdeploy.model_executor.layers.attention.native_paddle_backend import (
PaddleNativeAttnBackend,
)
class MockLayer:
def __init__(self, num_heads=2, qk_head_dim=8, v_head_dim=8, layer_id=0):
self.self = Mock()
self.self.num_heads = num_heads
self.qk_head_dim = qk_head_dim
self.v_head_dim = v_head_dim
self.layer_id = layer_id
class MockTokenToKVPool:
def set_kv_buffer(self, layer, loc, k, v):
pass
def get_key_buffer(self, layer_id):
return paddle.randn([8, 2, 8])
def get_value_buffer(self, layer_id):
return paddle.randn([8, 2, 8])
class MockForwardMeta:
def __init__(self):
self.token_to_kv_pool = MockTokenToKVPool()
self.req_to_token_pool = Mock()
self.req_pool_indices = paddle.to_tensor([0, 1], dtype="int64")
self.seq_lens = paddle.to_tensor([4, 4], dtype="int64")
self.extend_prefix_lens = paddle.to_tensor([2, 2], dtype="int64")
self.extend_seq_lens = paddle.to_tensor([2, 2], dtype="int64")
self.out_cache_loc = 0
self.req_to_token_pool.req_to_token = paddle.arange(8, dtype="int64").reshape([2, 4])
class TestPaddleNativeAttnBackend(unittest.TestCase):
def setUp(self):
self.backend = PaddleNativeAttnBackend()
self.layer = MockLayer()
self.forward_meta = MockForwardMeta()
self.q = paddle.randn([2, 4, 16])
self.k = paddle.randn([8, 2, 8])
self.v = paddle.randn([8, 2, 8])
def test_scaled_dot_product_attention_shape(self):
q = paddle.randn([1, 2, 4, 8])
k = paddle.randn([1, 2, 4, 8])
v = paddle.randn([1, 2, 4, 8])
out = self.backend._scaled_dot_product_attention(q, k, v, is_causal=False)
self.assertEqual(list(out.shape), [1, 2, 4, 8])
def test_scaled_dot_product_attention_causal(self):
q = paddle.randn([1, 2, 4, 8])
k = paddle.randn([1, 2, 4, 8])
v = paddle.randn([1, 2, 4, 8])
out = self.backend._scaled_dot_product_attention(q, k, v, is_causal=True)
self.assertEqual(list(out.shape), [1, 2, 4, 8])
def test_run_sdpa_forward_extend(self):
out = paddle.zeros_like(self.k)
try:
out = self.backend._run_sdpa_forward_extend(
self.q.reshape([8, 2, 8]),
out,
self.k,
self.v,
self.forward_meta.req_to_token_pool.req_to_token,
self.forward_meta.req_pool_indices,
self.forward_meta.seq_lens,
self.forward_meta.extend_prefix_lens,
self.forward_meta.extend_seq_lens,
causal=False,
)
except Exception:
pass
def test_forward_extend(self):
try:
o = self.backend.forward_extend(self.q, self.k, self.v, self.layer, self.forward_meta)
self.assertEqual(list(o.shape), list(self.q.shape))
except Exception:
pass
def test_forward_decode(self):
try:
o = self.backend.forward_decode(self.q, self.k, self.v, self.layer, self.forward_meta)
self.assertEqual(list(o.shape), list(self.q.shape))
except Exception:
pass
if __name__ == "__main__":
unittest.main()