Files
FastDeploy/fastdeploy/model_executor/models/ernie_vl_rm.py
2025-10-20 15:31:03 +08:00

159 lines
5.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
from typing import Optional
import paddle
from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.activation import SiluAndMul
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
RowParallelLinear,
)
from fastdeploy.model_executor.layers.pooler import DispatchPooler, Pooler
from fastdeploy.model_executor.utils import process_weights_before_loading
from .ernie4_5_vl.ernie4_5_vl_moe import (
Ernie4_5_VLModel,
Ernie4_5_VLMoeForConditionalGeneration,
)
from .interfaces_base import default_pooling_type
from .model_base import ModelCategory, ModelRegistry
class Ernie4_5_VLMoeRewardBaseModel(nn.Layer):
"""
Ernie4_5_VLMoeRewardBaseModel
"""
is_pooling_model = True
pooler: Pooler
def __init__(self, fd_config: FDConfig):
super().__init__()
# ----------- vision model ------------
self.vision_model = Ernie4_5_VLMoeForConditionalGeneration._init_vision_model(self, fd_config.model_config)
# ----------- resampler_model ------------
self.resampler_model = Ernie4_5_VLMoeForConditionalGeneration._init_resampler_model_model(
self, fd_config.model_config
)
self.ernie = Ernie4_5_VLModel(fd_config=fd_config)
self.head_dtype = paddle.bfloat16
# Persistent buffers for CUDA graphs.
self._input_embeddings = paddle.zeros(
[fd_config.parallel_config.max_model_len, fd_config.model_config.hidden_size],
dtype=fd_config.model_config.dtype,
)
self.rm_head = nn.Sequential(
(
"up_gate_proj",
MergedColumnParallelLinear(
fd_config=fd_config,
prefix="",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.hidden_size * 2,
with_bias=False,
),
),
("act_fn", SiluAndMul(fd_config=fd_config, bias=None, act_method=fd_config.model_config.hidden_act)),
(
"down_proj",
RowParallelLinear(
fd_config=fd_config,
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.num_labels,
skip_quant=True,
weight_dtype=self.head_dtype,
with_bias=False,
),
),
)
def get_input_embeddings(
self,
ids_remove_padding: paddle.Tensor,
image_token_num: int,
image_features: Optional[paddle.Tensor] = None,
) -> paddle.Tensor:
input_embeddings = self.ernie.get_input_embeddings(ids_remove_padding=ids_remove_padding)
if image_token_num > 0:
input_embeddings[ids_remove_padding == self.ernie.im_patch_id] = image_features.cast(self.ernie._dtype)
return input_embeddings
def forward(
self,
ids_remove_padding: paddle.Tensor,
image_features: Optional[paddle.Tensor],
forward_meta: ForwardMeta,
):
vl_moe_meta = self.ernie.prepare_vl_moe_meta(ids_remove_padding=ids_remove_padding)
input_embeddings = self.get_input_embeddings(
ids_remove_padding=ids_remove_padding,
image_features=image_features,
image_token_num=vl_moe_meta.image_token_num.item(),
)
self._input_embeddings.copy_(input_embeddings, False)
hidden_states = self.ernie(
input_embeddings=self._input_embeddings,
ids_remove_padding=ids_remove_padding,
forward_meta=forward_meta,
vl_moe_meta=vl_moe_meta,
)
hidden_states = hidden_states.to(self.head_dtype)
logits = self.rm_head(hidden_states)
return logits
@ModelRegistry.register_model_class(
architecture="Ernie4_5_VLMoeForProcessRewardModel",
module_name="ernie_vl_rm",
category=[ModelCategory.REWARD],
primary_use=ModelCategory.REWARD,
)
@default_pooling_type("ALL")
class Ernie4_5_VLMoeForProcessRewardModel(Ernie4_5_VLMoeRewardBaseModel):
def __init__(self, fd_config: FDConfig):
self.fd_config = fd_config
fd_config.model_config.num_labels = 1
super().__init__(fd_config=fd_config)
self.tie_word_embeddings = False
pooler_config = fd_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler({"encode": Pooler.for_encode(pooler_config)})
self.process_weights_before_loading_fn = process_weights_before_loading(skip_prefixes=["lm_head"])
@classmethod
def name(self):
""" """
return "Ernie4_5_VLMoeForProcessRewardModel"
@paddle.no_grad()
def load_weights(self, weights_iterator):
# Filter out lm_head weights of Ernie4_5_VLMoeForConditionalGeneration
Ernie4_5_VLMoeForConditionalGeneration.load_weights(self, weights_iterator)