mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
159 lines
5.6 KiB
Python
159 lines
5.6 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
|
from fastdeploy.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from fastdeploy.model_executor.layers.pooler import DispatchPooler, Pooler
|
|
from fastdeploy.model_executor.utils import process_weights_before_loading
|
|
|
|
from .ernie4_5_vl.ernie4_5_vl_moe import (
|
|
Ernie4_5_VLModel,
|
|
Ernie4_5_VLMoeForConditionalGeneration,
|
|
)
|
|
from .interfaces_base import default_pooling_type
|
|
from .model_base import ModelCategory, ModelRegistry
|
|
|
|
|
|
class Ernie4_5_VLMoeRewardBaseModel(nn.Layer):
|
|
"""
|
|
Ernie4_5_VLMoeRewardBaseModel
|
|
"""
|
|
|
|
is_pooling_model = True
|
|
pooler: Pooler
|
|
|
|
def __init__(self, fd_config: FDConfig):
|
|
super().__init__()
|
|
# ----------- vision model ------------
|
|
self.vision_model = Ernie4_5_VLMoeForConditionalGeneration._init_vision_model(self, fd_config.model_config)
|
|
# ----------- resampler_model ------------
|
|
self.resampler_model = Ernie4_5_VLMoeForConditionalGeneration._init_resampler_model_model(
|
|
self, fd_config.model_config
|
|
)
|
|
self.ernie = Ernie4_5_VLModel(fd_config=fd_config)
|
|
self.head_dtype = paddle.bfloat16
|
|
|
|
# Persistent buffers for CUDA graphs.
|
|
self._input_embeddings = paddle.zeros(
|
|
[fd_config.parallel_config.max_model_len, fd_config.model_config.hidden_size],
|
|
dtype=fd_config.model_config.dtype,
|
|
)
|
|
|
|
self.rm_head = nn.Sequential(
|
|
(
|
|
"up_gate_proj",
|
|
MergedColumnParallelLinear(
|
|
fd_config=fd_config,
|
|
prefix="",
|
|
input_size=fd_config.model_config.hidden_size,
|
|
output_size=fd_config.model_config.hidden_size * 2,
|
|
with_bias=False,
|
|
),
|
|
),
|
|
("act_fn", SiluAndMul(fd_config=fd_config, bias=None, act_method=fd_config.model_config.hidden_act)),
|
|
(
|
|
"down_proj",
|
|
RowParallelLinear(
|
|
fd_config=fd_config,
|
|
input_size=fd_config.model_config.hidden_size,
|
|
output_size=fd_config.model_config.num_labels,
|
|
skip_quant=True,
|
|
weight_dtype=self.head_dtype,
|
|
with_bias=False,
|
|
),
|
|
),
|
|
)
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
ids_remove_padding: paddle.Tensor,
|
|
image_token_num: int,
|
|
image_features: Optional[paddle.Tensor] = None,
|
|
) -> paddle.Tensor:
|
|
input_embeddings = self.ernie.get_input_embeddings(ids_remove_padding=ids_remove_padding)
|
|
if image_token_num > 0:
|
|
input_embeddings[ids_remove_padding == self.ernie.im_patch_id] = image_features.cast(self.ernie._dtype)
|
|
return input_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
ids_remove_padding: paddle.Tensor,
|
|
image_features: Optional[paddle.Tensor],
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
vl_moe_meta = self.ernie.prepare_vl_moe_meta(ids_remove_padding=ids_remove_padding)
|
|
input_embeddings = self.get_input_embeddings(
|
|
ids_remove_padding=ids_remove_padding,
|
|
image_features=image_features,
|
|
image_token_num=vl_moe_meta.image_token_num.item(),
|
|
)
|
|
self._input_embeddings.copy_(input_embeddings, False)
|
|
|
|
hidden_states = self.ernie(
|
|
input_embeddings=self._input_embeddings,
|
|
ids_remove_padding=ids_remove_padding,
|
|
forward_meta=forward_meta,
|
|
vl_moe_meta=vl_moe_meta,
|
|
)
|
|
hidden_states = hidden_states.to(self.head_dtype)
|
|
logits = self.rm_head(hidden_states)
|
|
return logits
|
|
|
|
|
|
@ModelRegistry.register_model_class(
|
|
architecture="Ernie4_5_VLMoeForProcessRewardModel",
|
|
module_name="ernie_vl_rm",
|
|
category=[ModelCategory.REWARD],
|
|
primary_use=ModelCategory.REWARD,
|
|
)
|
|
@default_pooling_type("ALL")
|
|
class Ernie4_5_VLMoeForProcessRewardModel(Ernie4_5_VLMoeRewardBaseModel):
|
|
|
|
def __init__(self, fd_config: FDConfig):
|
|
self.fd_config = fd_config
|
|
fd_config.model_config.num_labels = 1
|
|
super().__init__(fd_config=fd_config)
|
|
self.tie_word_embeddings = False
|
|
|
|
pooler_config = fd_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
self.pooler = DispatchPooler({"encode": Pooler.for_encode(pooler_config)})
|
|
|
|
self.process_weights_before_loading_fn = process_weights_before_loading(skip_prefixes=["lm_head"])
|
|
|
|
@classmethod
|
|
def name(self):
|
|
""" """
|
|
return "Ernie4_5_VLMoeForProcessRewardModel"
|
|
|
|
@paddle.no_grad()
|
|
def load_weights(self, weights_iterator):
|
|
# Filter out lm_head weights of Ernie4_5_VLMoeForConditionalGeneration
|
|
Ernie4_5_VLMoeForConditionalGeneration.load_weights(self, weights_iterator)
|