mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| Environment variables used by FastDeploy.
 | |
| """
 | |
| 
 | |
| import os
 | |
| from typing import Any, Callable
 | |
| 
 | |
| environment_variables: dict[str, Callable[[], Any]] = {
 | |
|     # Whether to use BF16 on CPU.
 | |
|     "FD_CPU_USE_BF16":
 | |
|     lambda: os.getenv("FD_CPU_USE_BF16", "False"),
 | |
| 
 | |
|     # Cuda architecture to build FastDeploy.This is a list of strings
 | |
|     # such as [80,90].
 | |
|     "FD_BUILDING_ARCS":
 | |
|     lambda: os.getenv("FD_BUILDING_ARCS", "[]"),
 | |
| 
 | |
|     # Log directory.
 | |
|     "FD_LOG_DIR":
 | |
|     lambda: os.getenv("FD_LOG_DIR", "log"),
 | |
| 
 | |
|     # Whether to use debug mode, can set 0 or 1
 | |
|     "FD_DEBUG":
 | |
|     lambda: os.getenv("FD_DEBUG", "0"),
 | |
| 
 | |
|     # Number of days to keep fastdeploy logs.
 | |
|     "FD_LOG_BACKUP_COUNT":
 | |
|     lambda: os.getenv("FD_LOG_BACKUP_COUNT", "7"),
 | |
| 
 | |
|     # Model download cache directory.
 | |
|     "FD_MODEL_CACHE":
 | |
|     lambda: os.getenv("FD_MODEL_CACHE", None),
 | |
| 
 | |
|     # Maximum number of stop sequences.
 | |
|     "FD_MAX_STOP_SEQS_NUM":
 | |
|     lambda: os.getenv("FD_MAX_STOP_SEQS_NUM", "5"),
 | |
| 
 | |
|     # Maximum length of stop sequences.
 | |
|     "FD_STOP_SEQS_MAX_LEN":
 | |
|     lambda: os.getenv("FD_STOP_SEQS_MAX_LEN", "8"),
 | |
| 
 | |
|     # GPU devices that will be used. This is a string that
 | |
|     # splited by comma, such as 0,1,2.
 | |
|     "CUDA_VISIBLE_DEVICES":
 | |
|     lambda: os.getenv("CUDA_VISIBLE_DEVICES", None),
 | |
| 
 | |
|     # Whether to use HuggingFace tokenizer.
 | |
|     "FD_USE_HF_TOKENIZER":
 | |
|     lambda: os.getenv("FD_USE_HF_TOKENIZER", 0),
 | |
| 
 | |
|     # Set the high watermark (HWM) for receiving data during ZMQ initialization
 | |
|     "FD_ZMQ_SNDHWM":
 | |
|     lambda: os.getenv("FD_ZMQ_SNDHWM", 10000),
 | |
| 
 | |
|     # cache kv quant params directory
 | |
|     "FD_CACHE_PARAMS":
 | |
|     lambda: os.getenv("FD_CACHE_PARAMS", "none"),
 | |
| 
 | |
|     # Set attention backend. "NATIVE_ATTN", "APPEND_ATTN"
 | |
|     # and "MLA_ATTN" can be set currently.
 | |
|     "FD_ATTENTION_BACKEND":
 | |
|     lambda: os.getenv("FD_ATTENTION_BACKEND", "APPEND_ATTN"),
 | |
| 
 | |
|     # Set sampling class. "base", "air" and "rejection" can be set currently.
 | |
|     "FD_SAMPLING_CLASS":
 | |
|     lambda: os.getenv("FD_SAMPLING_CLASS", "base"),
 | |
| 
 | |
|     # Set moe backend."cutlass","marlin" and "triton" can be set currently.
 | |
|     "FD_MOE_BACKEND":
 | |
|     lambda: os.getenv("FD_MOE_BACKEND", "cutlass"),
 | |
| 
 | |
|     # Set triton kernel JIT compilation directory.
 | |
|     "FD_TRITON_KERNEL_CACHE_DIR":
 | |
|     lambda: os.getenv("FD_TRITON_KERNEL_CACHE_DIR", None),
 | |
| 
 | |
|     # Whether transition from standalone PD decoupling to centralized inference
 | |
|     "FD_PD_CHANGEABLE":
 | |
|     lambda: os.getenv("FD_PD_CHANGEABLE", "1"),
 | |
| }
 | |
| 
 | |
| 
 | |
| def __getattr__(name: str):
 | |
|     # lazy evaluation of environment variables
 | |
|     if name in environment_variables:
 | |
|         return environment_variables[name]()
 | |
|     raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
 | |
| 
 | |
| 
 | |
| def __dir__():
 | |
|     return list(environment_variables.keys())
 | 
