mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			393 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			393 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import asyncio
 | |
| import aiozmq
 | |
| import json
 | |
| from aiozmq import zmq
 | |
| from asyncio import FIRST_COMPLETED, AbstractEventLoop, Task
 | |
| import time
 | |
| from collections.abc import AsyncGenerator, AsyncIterator
 | |
| from collections.abc import Sequence as GenericSequence
 | |
| from typing import Optional, Union, cast, TypeVar, List
 | |
| import uuid
 | |
| from fastapi import Request
 | |
| 
 | |
| from fastdeploy.entrypoints.openai.protocol import (
 | |
|     ErrorResponse,
 | |
|     CompletionRequest,
 | |
|     CompletionResponse,
 | |
|     CompletionStreamResponse,
 | |
|     CompletionResponseStreamChoice,
 | |
|     CompletionResponseChoice,
 | |
|     UsageInfo,
 | |
|     DeltaToolCall,
 | |
|     DeltaFunctionCall,
 | |
|     ToolCall,
 | |
|     FunctionCall
 | |
| )
 | |
| from fastdeploy.utils import api_server_logger
 | |
| from fastdeploy.engine.request import RequestOutput
 | |
| 
 | |
| 
 | |
| class OpenAIServingCompletion:
 | |
|     def __init__(self, engine_client, pid):
 | |
|         self.engine_client = engine_client
 | |
|         self.pid = pid
 | |
| 
 | |
|     async def create_completion(self, request: CompletionRequest):
 | |
|         """
 | |
|         Create a completion for the given prompt.
 | |
|         """
 | |
|         created_time = int(time.time())
 | |
|         if request.user is not None:
 | |
|             request_id = f"cmpl-{request.user}-{uuid.uuid4()}"
 | |
|         else:
 | |
|             request_id = f"cmpl-{uuid.uuid4()}"
 | |
|         api_server_logger.info(f"initialize request {request_id}")
 | |
|         request_prompt_ids = None
 | |
|         request_prompts = None
 | |
|         try:
 | |
|             if isinstance(request.prompt, str):
 | |
|                 request_prompts = [request.prompt]
 | |
|             elif isinstance(request.prompt, list) and all(isinstance(item,  int) for item in request.prompt):
 | |
|                 request_prompt_ids = [request.prompt]
 | |
|             elif isinstance(request.prompt, list) and all(isinstance(item, str) for item in request.prompt):
 | |
|                 request_prompts = request.prompt
 | |
|             elif isinstance(request.prompt, list):
 | |
|                 for item in request.prompt:
 | |
|                     if isinstance(item, list) and all(isinstance(x, int) for x in item):
 | |
|                         continue
 | |
|                     else:
 | |
|                         raise ValueError("Prompt must be a string, a list of strings or a list of integers.")
 | |
|                 request_prompt_ids = request.prompt
 | |
|             else:
 | |
|                 raise ValueError("Prompt must be a string, a list of strings or a list of integers.")
 | |
|         except Exception as e:
 | |
|             return ErrorResponse(message=str(e), code=400)
 | |
| 
 | |
|         if request_prompt_ids is not None:
 | |
|             request_prompts = request_prompt_ids
 | |
|         num_choices = len(request_prompts)
 | |
| 
 | |
|         api_server_logger.info(f"start inference for request {num_choices}")
 | |
|         prompt_batched_token_ids = []
 | |
|         try:
 | |
|             for idx, prompt in enumerate(request_prompts):
 | |
|                 request_id_idx = f"{request_id}-{idx}"
 | |
|                 current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
 | |
|                 try:
 | |
|                     current_req_dict["arrival_time"] = time.time()
 | |
|                     prompt_batched_token_ids.append(
 | |
|                         self.engine_client.format_and_add_data(current_req_dict)
 | |
|                     )
 | |
|                 except Exception as e:
 | |
|                     return ErrorResponse(message=str(e), code=400)
 | |
| 
 | |
|                 del current_req_dict
 | |
| 
 | |
|             if request.stream:
 | |
|                 return self.completion_stream_generator(
 | |
|                     request=request,
 | |
|                     num_choices = num_choices,
 | |
|                     request_id=request_id,
 | |
|                     created_time=created_time,
 | |
|                     model_name=request.model,
 | |
|                     prompt_batched_token_ids=prompt_batched_token_ids
 | |
|                 )
 | |
|             else:
 | |
|                 try:
 | |
|                     return await self.completion_full_generator(
 | |
|                         request=request,
 | |
|                         num_choices=num_choices,
 | |
|                         request_id=request_id,
 | |
|                         created_time=created_time,
 | |
|                         model_name=request.model,
 | |
|                         prompt_batched_token_ids=prompt_batched_token_ids
 | |
|                     )
 | |
|                 except Exception as e:
 | |
|                     return ErrorResponse(code=400, message=str(e))
 | |
| 
 | |
|         except Exception as e:
 | |
|             return ErrorResponse(message=str(e), code=400)
 | |
| 
 | |
| 
 | |
|     async def completion_full_generator(
 | |
|         self,
 | |
|         request: CompletionRequest,
 | |
|         num_choices: int,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list()
 | |
|     ):
 | |
|         """
 | |
|         Process the full completion request with multiple choices.
 | |
|         """
 | |
|         dealer = None
 | |
|         try:
 | |
|             request_ids = [f"{request_id}-{i}" for i in range(num_choices)]
 | |
|             # create dealer
 | |
|             dealer = await aiozmq.create_zmq_stream(
 | |
|                 zmq.DEALER,
 | |
|                 connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
 | |
|             )
 | |
| 
 | |
|             for rid in request_ids:
 | |
|                 dealer.write([b"", rid.encode("utf-8")])
 | |
| 
 | |
|             valid_results = [dict()] * num_choices
 | |
|             output_tokens = [0] * num_choices
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
|                 data = json.loads(raw_data[-1].decode("utf-8"))
 | |
|                 rid = int(data["request_id"].split("-")[-1])
 | |
|                 if data.get("error_code", 200) != 200:
 | |
|                     raise ValueError("{}".format(data["error_msg"]))
 | |
| 
 | |
|                 self.engine_client.data_processor.process_response_dict(
 | |
|                     data, stream=False)
 | |
|                 output_tokens[rid] += len(data["outputs"]["token_ids"])
 | |
|                 if data.get("finished", False):
 | |
|                     data["output_token_ids"] = output_tokens[rid]
 | |
|                     valid_results[rid] = data
 | |
|                     num_choices -= 1
 | |
| 
 | |
|             return self.request_output_to_completion_response(
 | |
|                 final_res_batch=valid_results,
 | |
|                 request=request,
 | |
|                 request_id=request_id,
 | |
|                 created_time=created_time,
 | |
|                 model_name=model_name,
 | |
|                 prompt_batched_token_ids=prompt_batched_token_ids
 | |
|             )
 | |
|         except Exception as e:
 | |
|             api_server_logger.error(
 | |
|                 f"Error in completion_full_generator: {e}", exc_info=True
 | |
|             )
 | |
|             raise
 | |
|         finally:
 | |
|             if dealer is not None:
 | |
|                 dealer.close()
 | |
| 
 | |
| 
 | |
|     async def completion_stream_generator(
 | |
|         self,
 | |
|         request: CompletionRequest,
 | |
|         num_choices: int,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list()
 | |
|     ):
 | |
|         """
 | |
|         Process the stream completion request.
 | |
|         """
 | |
|         try:
 | |
|             dealer = await aiozmq.create_zmq_stream(
 | |
|                 zmq.DEALER,
 | |
|                 connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
 | |
|             )
 | |
| 
 | |
|             for i in range(num_choices):
 | |
|                 req_id = f"{request_id}-{i}"
 | |
|                 dealer.write([b"", req_id.encode('utf-8')])  # 发送多路请求
 | |
|             output_tokens = [0] * num_choices
 | |
|             inference_start_time = [0] * num_choices
 | |
|             first_iteration = [True] * num_choices
 | |
|             max_streaming_response_tokens = 1
 | |
|             if request.suffix is not None and request.suffix.get("max_streaming_response_tokens", 1) > 1:
 | |
|                 max_streaming_response_tokens = request.suffix["max_streaming_response_tokens"]
 | |
|             choices = []
 | |
| 
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
| 
 | |
| 
 | |
|                 res = json.loads(raw_data[-1].decode('utf-8'))
 | |
|                 idx = int(res["request_id"].split("-")[-1])
 | |
|                 if res.get("error_code", 200) != 200:
 | |
|                     raise ValueError("{}".format(res["error_msg"]))
 | |
| 
 | |
|                 if first_iteration[idx]:
 | |
|                     if request.suffix is not None and request.suffix.get("training", False):
 | |
|                         chunk = CompletionStreamResponse(
 | |
|                             id=request_id,
 | |
|                             created=created_time,
 | |
|                             model=model_name,
 | |
|                             choices=[CompletionResponseStreamChoice(
 | |
|                                 index=idx,
 | |
|                                 text="",
 | |
|                                 token_ids=list(prompt_batched_token_ids[idx])
 | |
|                             )]
 | |
|                         )
 | |
|                         yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                     first_iteration[idx] = False
 | |
| 
 | |
| 
 | |
|                 self.engine_client.data_processor.process_response_dict(
 | |
|                     res, stream=True)
 | |
|                 if res['metrics'].get('first_token_time') is not None:
 | |
|                     arrival_time = res['metrics']['first_token_time']
 | |
|                     inference_start_time[idx] = res['metrics']['inference_start_time']
 | |
|                 else:
 | |
|                     arrival_time = res['metrics']['arrival_time'] - inference_start_time[idx]
 | |
|                 # api_server_logger.info(f"{arrival_time}")
 | |
| 
 | |
|                 output = res["outputs"]
 | |
| 
 | |
|                 choices.append(CompletionResponseStreamChoice(
 | |
|                     index=idx,
 | |
|                     text=output["text"],
 | |
|                     token_ids=output.get("token_ids"),
 | |
|                     tool_calls=output.get("tool_call_content"),
 | |
|                     reasoning_content=output.get("reasoning_content"),
 | |
|                     arrival_time=arrival_time
 | |
|                 ))
 | |
|                 if res["finished"]:
 | |
|                     if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
 | |
|                         chunk.choices[0].finish_reason = "stop"
 | |
|                         if self.engine_client.reasoning_parser == "ernie_x1" and \
 | |
|                                 output.get("finish_reason", "") == "tool_calls":
 | |
|                             chunk.choices[0].finish_reason = "tool_calls"
 | |
|                     else:
 | |
|                         chunk.choices[0].finish_reason = "length"
 | |
| 
 | |
|                 output_tokens[idx] += 1
 | |
| 
 | |
|                 if len(choices) == max_streaming_response_tokens or res["finished"]:
 | |
|                     chunk = CompletionStreamResponse(
 | |
|                         id=request_id,
 | |
|                         created=created_time,
 | |
|                         model=model_name,
 | |
|                         choices=choices
 | |
|                     )
 | |
|                     choices = []
 | |
| 
 | |
|                 yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
| 
 | |
|                 if res["finished"]:
 | |
|                     num_choices -= 1
 | |
|                     if getattr(request, "stream_options", None) and request.stream_options.include_usage:
 | |
|                         usage_chunk = CompletionStreamResponse(
 | |
|                             id=request_id,
 | |
|                             created=created_time,
 | |
|                             model=model_name,
 | |
|                             choices=[],
 | |
|                             usage=UsageInfo(
 | |
|                                 prompt_tokens=len(prompt_batched_token_ids[idx]),
 | |
|                                 completion_tokens=output_tokens[idx]
 | |
|                             )
 | |
|                         )
 | |
|                         yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
| 
 | |
| 
 | |
|         except Exception as e:
 | |
|             yield f"data: {ErrorResponse(message=str(e), code=400).model_dump_json(exclude_unset=True)}\n\n"
 | |
|         finally:
 | |
|             del request
 | |
|             if dealer is not None:
 | |
|                 dealer.close()
 | |
|             yield "data: [DONE]\n\n"
 | |
| 
 | |
| 
 | |
|     def request_output_to_completion_response(
 | |
|         self,
 | |
|         final_res_batch: List[RequestOutput],
 | |
|         request: CompletionRequest,
 | |
|         request_id: str,
 | |
|         created_time: int,
 | |
|         model_name: str,
 | |
|         prompt_batched_token_ids: list()
 | |
|     ) -> CompletionResponse:
 | |
|         choices: List[CompletionResponseChoice] = []
 | |
|         num_prompt_tokens = 0
 | |
|         num_generated_tokens = 0
 | |
| 
 | |
|         for idx in range(len(final_res_batch)):
 | |
|             final_res = final_res_batch[idx]
 | |
|             prompt_token_ids = prompt_batched_token_ids[idx]
 | |
|             assert prompt_token_ids is not None
 | |
|             prompt_text = final_res["prompt"]
 | |
| 
 | |
|             output = final_res["outputs"]
 | |
|             if request.echo:
 | |
|                 assert prompt_text is not None
 | |
|                 if request.max_tokens == 0:
 | |
|                     token_ids = prompt_token_ids
 | |
|                     output_text = prompt_text
 | |
|                 else:
 | |
|                     token_ids = [*prompt_token_ids, *output["token_ids"]]
 | |
|                     output_text = prompt_text + output["text"]
 | |
|             else:
 | |
|                 token_ids = output["token_ids"]
 | |
|                 output_text = output["text"]
 | |
| 
 | |
|             choice_data = CompletionResponseChoice(
 | |
|                 index=len(choices),
 | |
|                 text=output_text,
 | |
|                 reasoning_content=output.get('reasoning_content'),
 | |
|                 tool_calls=output.get("tool_call_content"),
 | |
|                 logprobs=None,
 | |
|                 finish_reason=None
 | |
|             )
 | |
|             choices.append(choice_data)
 | |
| 
 | |
|             num_generated_tokens += final_res["output_token_ids"]
 | |
| 
 | |
|             num_prompt_tokens += len(prompt_token_ids)
 | |
| 
 | |
|         usage = UsageInfo(
 | |
|             prompt_tokens=num_prompt_tokens,
 | |
|             completion_tokens=num_generated_tokens,
 | |
|             total_tokens=num_prompt_tokens + num_generated_tokens,
 | |
|         )
 | |
|         del request
 | |
| 
 | |
|         return CompletionResponse(
 | |
|             id=request_id,
 | |
|             created=created_time,
 | |
|             model=model_name,
 | |
|             choices=choices,
 | |
|             usage=usage,
 | |
|         )
 | 
