mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import asyncio
 | |
| import aiozmq
 | |
| from aiozmq import zmq
 | |
| import json
 | |
| import time
 | |
| from collections.abc import AsyncGenerator, AsyncIterator
 | |
| from typing import Callable, Optional, Union, List
 | |
| import uuid
 | |
| 
 | |
| from fastapi import Request
 | |
| from pydantic import BaseModel
 | |
| from fastdeploy.entrypoints.openai.protocol import (
 | |
|     ChatCompletionRequest,
 | |
|     DeltaMessage,
 | |
|     ChatCompletionResponseChoice,
 | |
|     ChatCompletionStreamResponse,
 | |
|     ChatCompletionResponseStreamChoice,
 | |
|     ChatMessage,
 | |
|     UsageInfo,
 | |
|     PromptTokenUsageInfo,
 | |
|     ChatCompletionResponse,
 | |
|     ErrorResponse,
 | |
| )
 | |
| from fastdeploy.metrics.work_metrics import work_process_metrics
 | |
| 
 | |
| from fastdeploy.utils import api_server_logger
 | |
| 
 | |
| from fastdeploy.engine.request import RequestOutput
 | |
| 
 | |
| 
 | |
| 
 | |
| class OpenAIServingChat:
 | |
|     """
 | |
|     OpenAI-style chat completions serving
 | |
|     """
 | |
| 
 | |
|     def __init__(self, engine_client, pid):
 | |
|         self.engine_client = engine_client
 | |
|         self.pid = pid
 | |
| 
 | |
|     async def create_chat_completion(
 | |
|         self,
 | |
|         request: ChatCompletionRequest
 | |
|     ):
 | |
|         """
 | |
|         Create a new chat completion using the specified parameters.
 | |
|         """
 | |
|         if request.user is not None:
 | |
|             request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
 | |
|         else:
 | |
|             request_id = f"chatcmpl-{uuid.uuid4()}"
 | |
|         api_server_logger.info(f"create chat completion request: {request_id}")
 | |
| 
 | |
|         try:
 | |
|             current_req_dict = request.to_dict_for_infer(request_id)
 | |
|             current_req_dict["arrival_time"] = time.time()
 | |
|             prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
 | |
|         except Exception as e:
 | |
|             return ErrorResponse(code=400, message=str(e))
 | |
| 
 | |
|         del current_req_dict
 | |
| 
 | |
|         if request.stream:
 | |
|             return self.chat_completion_stream_generator(
 | |
|                 request, request_id,
 | |
|                 request.model,
 | |
|                 prompt_token_ids)
 | |
|         else:
 | |
|             try:
 | |
|                 return await self.chat_completion_full_generator(
 | |
|                     request, request_id,
 | |
|                     request.model,
 | |
|                     prompt_token_ids)
 | |
|             except Exception as e:
 | |
|                 return ErrorResponse(code=400, message=str(e))
 | |
| 
 | |
|     def _create_streaming_error_response(self, message: str) -> str:
 | |
|         error_response = ErrorResponse(
 | |
|             code=400,
 | |
|             message=message,
 | |
|         )
 | |
|         return error_response.model_dump_json()
 | |
| 
 | |
|     async def chat_completion_stream_generator(
 | |
|         self,
 | |
|         request: ChatCompletionRequest,
 | |
|         request_id: str,
 | |
|         model_name: str,
 | |
|         prompt_token_ids: list()
 | |
|     ):
 | |
|         """
 | |
|         Streaming chat completion generator.
 | |
|         """
 | |
|         created_time = int(time.time())
 | |
|         chunk_object_type: str = "chat.completion.chunk"
 | |
|         first_iteration = True
 | |
|         previous_num_tokens = 0
 | |
|         num_prompt_tokens = 0
 | |
|         num_choices = 1
 | |
|         max_streaming_response_tokens = 1
 | |
|         enable_thinking = None
 | |
|         if request.metadata is not None and request.metadata.get("max_streaming_response_tokens", 1) > 1:
 | |
|             max_streaming_response_tokens = request.metadata["max_streaming_response_tokens"]
 | |
| 
 | |
|         stream_options = request.stream_options
 | |
|         if stream_options is None:
 | |
|             include_usage = False
 | |
|             include_continuous_usage = False
 | |
|         else:
 | |
|             include_usage = stream_options.include_usage
 | |
|             include_continuous_usage = stream_options.continuous_usage_stats
 | |
|         chunk = ChatCompletionStreamResponse(
 | |
|             id=request_id,
 | |
|             object=chunk_object_type,
 | |
|             created=created_time,
 | |
|             choices=[],
 | |
|             model=model_name
 | |
|         )
 | |
|         try:
 | |
|             dealer = await aiozmq.create_zmq_stream(
 | |
|                 zmq.DEALER,
 | |
|                 connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
 | |
|             )
 | |
|             dealer.write([b"", request_id.encode('utf-8')])
 | |
|             choices = []
 | |
|             current_waiting_time = 0
 | |
|             while num_choices > 0:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             if choices:
 | |
|                                 chunk.choices = choices
 | |
|                                 yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
|     
 | |
|                 res = json.loads(raw_data[-1].decode('utf-8'))
 | |
|                 if res.get("error_code", 200) != 200:
 | |
|                     raise ValueError("{}".format(res["error_msg"]))
 | |
|                 if request.metadata is not None:
 | |
|                     enable_thinking = request.metadata.get("enable_thinking")
 | |
|                 self.engine_client.data_processor.process_response_dict(
 | |
|                     res, stream=True, enable_thinking=enable_thinking)
 | |
| 
 | |
|                 if res['metrics']['first_token_time'] is not None:
 | |
|                     arrival_time = res['metrics']['first_token_time']
 | |
|                     inference_start_time = res['metrics']['inference_start_time']
 | |
|                 else:
 | |
|                     arrival_time = res['metrics']['arrival_time'] - inference_start_time
 | |
|                 if first_iteration:
 | |
|                     num_prompt_tokens = len(prompt_token_ids)
 | |
|                     num_cached_tokens = res.get("num_cached_tokens", 0)
 | |
|                     for i in range(num_choices):
 | |
|                         choice = ChatCompletionResponseStreamChoice(
 | |
|                             index=i,
 | |
|                             delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
 | |
|                         )
 | |
|                         if request.metadata is not None and request.metadata.get("training", False):
 | |
|                             choice.delta.token_ids = prompt_token_ids
 | |
|                         chunk = ChatCompletionStreamResponse(
 | |
|                             id=request_id,
 | |
|                             object=chunk_object_type,
 | |
|                             created=created_time,
 | |
|                             choices=[choice],
 | |
|                             model=model_name
 | |
|                         )
 | |
|                         if include_continuous_usage:
 | |
|                             chunk.usage = UsageInfo(
 | |
|                                 prompt_tokens=num_prompt_tokens,
 | |
|                                 completion_tokens=0,
 | |
|                                 total_tokens=num_prompt_tokens,
 | |
|                                 prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
 | |
|                             )
 | |
|                         yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
 | |
|                     first_iteration = False
 | |
| 
 | |
|                 output = res["outputs"]
 | |
|                 delta_text = output["text"]
 | |
| 
 | |
|                 previous_num_tokens += len(output["token_ids"])
 | |
|                 delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
 | |
|                     token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
 | |
| 
 | |
|                 choice = ChatCompletionResponseStreamChoice(
 | |
|                     index=0,
 | |
|                     delta=delta_message,
 | |
|                     arrival_time=arrival_time
 | |
|                 )
 | |
|                 if res["finished"]:
 | |
|                     num_choices -= 1
 | |
|                     work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
 | |
|                     if request.max_tokens is None or previous_num_tokens != request.max_tokens:
 | |
|                         choice.finish_reason = "stop"
 | |
|                         if self.engine_client.reasoning_parser == "ernie_x1" and \
 | |
|                                 output.get("finish_reason", "") == "tool_calls":
 | |
|                             choice.finish_reason = "tool_calls"
 | |
|                     else:
 | |
|                         choice.finish_reason = "length"
 | |
| 
 | |
|                 if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
 | |
|                     choice.delta.token_ids = output["token_ids"]
 | |
|                 if include_continuous_usage:
 | |
|                     chunk.usage = UsageInfo(
 | |
|                         prompt_tokens=num_prompt_tokens,
 | |
|                         completion_tokens=previous_num_tokens,
 | |
|                         total_tokens=num_prompt_tokens + previous_num_tokens
 | |
|                     )
 | |
|                 choices.append(choice)
 | |
| 
 | |
|                 if len(choices) == max_streaming_response_tokens or res["finished"]:
 | |
|                     chunk.choices = choices
 | |
|                     yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
|                     choices = []
 | |
| 
 | |
| 
 | |
|             if include_usage:
 | |
|                 completion_tokens = previous_num_tokens
 | |
|                 usage = UsageInfo(
 | |
|                     prompt_tokens=num_prompt_tokens,
 | |
|                     completion_tokens=completion_tokens,
 | |
|                     total_tokens=num_prompt_tokens + completion_tokens
 | |
|                 )
 | |
|                 chunk = ChatCompletionStreamResponse(
 | |
|                     id=request_id,
 | |
|                     object=chunk_object_type,
 | |
|                     created=created_time,
 | |
|                     choices=[],
 | |
|                     model=model_name,
 | |
|                     usage=usage
 | |
|                 )
 | |
|                 yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
 | |
| 
 | |
|         except Exception as e:
 | |
|             error_data = self._create_streaming_error_response(str(e))
 | |
|             yield f"data: {error_data}\n\n"
 | |
|         finally:
 | |
|             dealer.close()
 | |
|             yield "data: [DONE]\n\n"
 | |
| 
 | |
|     async def chat_completion_full_generator(
 | |
|         self,
 | |
|         request: ChatCompletionRequest,
 | |
|         request_id: str,
 | |
|         model_name: str,
 | |
|         prompt_token_ids: list()
 | |
|     ):
 | |
|         """
 | |
|         Full chat completion generator.
 | |
|         """
 | |
|         created_time = int(time.time())
 | |
|         final_res = None
 | |
|         enable_thinking = None
 | |
|         try:
 | |
|             dealer = await aiozmq.create_zmq_stream(
 | |
|                 zmq.DEALER,
 | |
|                 connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
 | |
|             )
 | |
|             dealer.write([b"", request_id.encode('utf-8')])
 | |
|             final_res = None
 | |
|             previous_num_tokens = 0
 | |
|             current_waiting_time = 0
 | |
|             while True:
 | |
|                 try:
 | |
|                     raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
 | |
|                     current_waiting_time = 0
 | |
|                 except asyncio.TimeoutError:
 | |
|                     current_waiting_time += 10
 | |
|                     if current_waiting_time == 300:
 | |
|                         status, msg = self.engine_client.check_health()
 | |
|                         if not status:
 | |
|                             raise ValueError(f"Engine is not healthy: {msg}")
 | |
|                         else:
 | |
|                             current_waiting_time = 0
 | |
|                     await asyncio.sleep(0.1)
 | |
|                     continue
 | |
| 
 | |
|                 data = json.loads(raw_data[-1].decode('utf-8'))
 | |
|                 if data.get("error_code", 200) != 200:
 | |
|                     raise ValueError("{}".format(data["error_msg"]))
 | |
|                 if request.metadata is not None:
 | |
|                     enable_thinking = request.metadata.get("enable_thinking")
 | |
|                 data = self.engine_client.data_processor.process_response_dict(
 | |
|                     data, stream=False, enable_thinking=enable_thinking)
 | |
|                 # api_server_logger.debug(f"Client {request_id} received: {data}")
 | |
|                 previous_num_tokens += len(data["outputs"]["token_ids"])
 | |
|                 if data["finished"]:
 | |
|                     final_res = data
 | |
|                     break
 | |
|         finally:
 | |
|             dealer.close()
 | |
| 
 | |
|         choices = []
 | |
|         output = final_res["outputs"]
 | |
|         message = ChatMessage(
 | |
|             role="assistant",
 | |
|             content=output["text"],
 | |
|             reasoning_content=output.get("reasoning_content"),
 | |
|             tool_calls=output.get("tool_call_content"),
 | |
|             token_ids=output.get("token_ids")
 | |
|         )
 | |
| 
 | |
|         choice = ChatCompletionResponseChoice(
 | |
|             index=0,
 | |
|             message=message,
 | |
|             finish_reason=None
 | |
|         )
 | |
|         if request.max_tokens is None or previous_num_tokens != request.max_tokens:
 | |
|             choice.finish_reason = "stop"
 | |
|             if self.engine_client.reasoning_parser == "ernie_x1" and \
 | |
|                     output.get("finish_reason", "") == "tool_calls":
 | |
|                 choice.finish_reason = "tool_calls"
 | |
|         else:
 | |
|             choice.finish_reason = "length"
 | |
|         choices.append(choice)
 | |
| 
 | |
|         num_prompt_tokens = len(prompt_token_ids)
 | |
|         num_generated_tokens = previous_num_tokens
 | |
|         usage = UsageInfo(
 | |
|             prompt_tokens=num_prompt_tokens,
 | |
|             completion_tokens=num_generated_tokens,
 | |
|             total_tokens=num_prompt_tokens + num_generated_tokens,
 | |
|             prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0))
 | |
|         )
 | |
|         work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
 | |
|         return ChatCompletionResponse(
 | |
|             id=request_id,
 | |
|             created=created_time,
 | |
|             model=model_name,
 | |
|             choices=choices,
 | |
|             usage=usage
 | |
|         )
 | 
