Files
FastDeploy/tests/acc_eval/detection/eval_yolox.py
yunyaoXYY 07ad7216f6 [Other] Add accuracy evaluation scripts (#1034)
* add accuracy scripts

* add accuracy scripts

* Add FlyCV doc

* fix conflict

* fix conflict

* fix conflict
2023-01-04 15:54:03 +08:00

68 lines
1.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default=None,
help="Path of PaddleDetection model directory")
parser.add_argument(
"--image", default=None, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.use_trt:
option.use_trt_backend()
return option
args = parse_arguments()
if args.model_dir is None:
model_dir = fd.download_model(name='yolox_s_300e_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.detection.PaddleYOLOX(
model_file, params_file, config_file, runtime_option=runtime_option)
image_file_path = "../dataset/coco/val2017"
annotation_file_path = "../dataset/coco/annotations/instances_val2017.json"
res = fd.vision.evaluation.eval_detection(model, image_file_path,
annotation_file_path)
print(res)