Files
FastDeploy/examples/vision/classification/paddleclas
yunyaoXYY c38b7d4377 [Backend] Support onnxruntime DirectML inference. (#1304)
* Fix links in readme

* Fix links in readme

* Update PPOCRv2/v3 examples

* Update auto compression configs

* Add neww quantization  support for paddleclas model

* Update quantized Yolov6s model download link

* Improve PPOCR comments

* Add English doc for quantization

* Fix PPOCR rec model bug

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add  new paddleseg quantization support

* Add Ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Add ascend model list

* Support DirectML in onnxruntime

* Support onnxruntime DirectML

* Support onnxruntime DirectML

* Support onnxruntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Support OnnxRuntime DirectML

* Remove DirectML vision model example

* Imporve OnnxRuntime DirectML

* Imporve OnnxRuntime DirectML

* fix opencv cmake in Windows

* recheck codestyle
2023-02-17 10:53:51 +08:00
..

English | 简体中文

PaddleClas Model Deployment

Model Description

Now FastDeploy supports the deployment of the following models

Prepare PaddleClas Deployment Model

For PaddleClas model export, refer to Model Export.

AttentionThe model exported by PaddleClas contains two files, including inference.pdmodel and inference.pdiparams. However, it is necessary to prepare the generic inference_cls.yaml file provided by PaddleClas to meet the requirements of deployment. FastDeploy will obtain from the yaml file the preprocessing information required during inference. FastDeploy will get the preprocessing information needed by the model from the yaml file. Developers can directly download this file. But they need to modify the configuration parameters in the yaml file based on personalized needs. Refer to the configuration information in the infer section of the PaddleClas model training config.

Download Pre-trained Model

For developers' testing, some models exported by PaddleClas (including the inference_cls.yaml file) are provided below. Developers can download them directly.

Model Parameter File Size Input Shape Top1 Top5
PPLCNet_x1_0 12MB 224x224 71.32% 90.03%
PPLCNetV2_base 26MB 224x224 77.04% 93.27%
EfficientNetB7 255MB 600x600 84.3% 96.9%
EfficientNetB0_small 18MB 224x224 75.8% 75.8%
GhostNet_x1_3_ssld 29MB 224x224 75.7% 92.5%
GhostNet_x0_5 10MB 224x224 66.8% 86.9%
MobileNetV1_x0_25 1.9MB 224x224 51.4% 75.5%
MobileNetV1_ssld 17MB 224x224 77.9% 93.9%
MobileNetV2_x0_25 5.9MB 224x224 53.2% 76.5%
MobileNetV2_ssld 14MB 224x224 76.74% 93.39%
MobileNetV3_small_x0_35_ssld 6.4MB 224x224 55.55% 77.71%
MobileNetV3_large_x1_0_ssld 22MB 224x224 78.96% 94.48%
ShuffleNetV2_x0_25 2.4MB 224x224 49.9% 73.79%
ShuffleNetV2_x2_0 29MB 224x224 73.15% 91.2%
SqueezeNet1_1 4.8MB 224x224 60.1% 81.9%
InceptionV3 92MB 299x299 79.14% 94.59%
PPHGNet_tiny_ssld 57MB 224x224 81.95% 96.12%
PPHGNet_base_ssld 274MB 224x224 85.0% 97.35%
ResNet50_vd 98MB 224x224 79.12% 94.44%

Detailed Deployment Documents