Files
FastDeploy/fastdeploy/model_executor/logits_processor/builtin.py
李泳桦 a012e3608b [Feature] support logits processors (#4515)
* [feat] provide an interface for logits processors and a builtin LogitBiasLogitsProcessor

* [chore] fix code style

* [fix] add unit test & fix existing bugs

* [feat] add engine/worker arg --logits-processors

* [fix] redefine user args as logits_processors_args and fix some bugs

* [fix] fix test_sampler

* Update fastdeploy/model_executor/logits_processor/builtin.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update fastdeploy/model_executor/logits_processor/__init__.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/model_executor/test_logits_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* [fix] fix typo

* Update fastdeploy/engine/sampling_params.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* [fix] fix bracelet

* [chore] redefine logits processor interface: pass the entire share_inputs into LP, do not copy share_inputs and logits

* [doc] add docs

* [fix] fix logit bias processor not applied when decoding is too fast & add docs and tests

* [fix] fix redundant code

* [feat] skip apply() if no bias is specified

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-29 00:08:53 +08:00

69 lines
2.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.logits_processor.base import LogitsProcessor
class LogitBiasLogitsProcessor(LogitsProcessor):
"""
Maintains per-request logit biases and applies them to logits.
"""
def __init__(self, fd_config: FDConfig):
self.device = paddle.device.get_device()
self.dtype = fd_config.model_config.dtype
self.batch_ids: list[int] = []
self.token_ids: list[int] = []
self.biases: list[float] = []
def update_state(self, share_inputs: dict):
"""Build per-step logit-bias state from request slots and move it to device."""
# Retrive inference states from share_inputs
stop_flags = share_inputs["stop_flags"]
logits_processors_args = share_inputs["logits_processors_args"]
logits_processors_args = [a for a, f in zip(logits_processors_args, stop_flags) if not f]
# Get bias states for each request
self.batch_ids = []
self.token_ids: list[int] = []
self.biases: list[float] = []
for batch_id, logit_proc_args in enumerate(logits_processors_args):
tok_id_bias_map = logit_proc_args.get("logit_bias") or {}
self.batch_ids.extend([batch_id] * len(tok_id_bias_map))
self.token_ids.extend(tok_id_bias_map.keys())
self.biases.extend(tok_id_bias_map.values())
return
def apply(self, logits: paddle.Tensor) -> paddle.Tensor:
"""Apply logit bias to logits: [batch_size, vocab_size]"""
# Skip if no bias is applied
if len(self.biases) == 0:
return logits
# Make bias indices and bias tensor
bias_indices = (
paddle.tensor(self.batch_ids, dtype="int32").to(self.device),
paddle.tensor(self.token_ids, dtype="int32").to(self.device),
)
bias_tensor = paddle.tensor(self.biases, device=self.device, dtype=self.dtype)
logits[bias_indices] += bias_tensor
return logits