mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Fix bug in ppyoloe * fix ppyoloe output format * remove some requirements * fix conflicts
74 lines
2.8 KiB
Python
74 lines
2.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import copy
|
|
import collections
|
|
|
|
|
|
def eval_detection(model,
|
|
data_dir,
|
|
ann_file,
|
|
conf_threshold=None,
|
|
nms_iou_threshold=None,
|
|
plot=False):
|
|
from .utils import CocoDetection
|
|
from .utils import COCOMetric
|
|
import cv2
|
|
from tqdm import trange
|
|
|
|
if conf_threshold is not None or nms_iou_threshold is not None:
|
|
assert conf_threshold is not None and nms_iou_threshold is not None, "The conf_threshold and nms_iou_threshold should be setted at the same time"
|
|
assert isinstance(conf_threshold, (
|
|
float,
|
|
int)), "The conf_threshold:{} need to be int or float".format(
|
|
conf_threshold)
|
|
assert isinstance(nms_iou_threshold, (
|
|
float,
|
|
int)), "The nms_iou_threshold:{} need to be int or float".format(
|
|
nms_iou_threshold)
|
|
eval_dataset = CocoDetection(
|
|
data_dir=data_dir, ann_file=ann_file, shuffle=False)
|
|
all_image_info = eval_dataset.file_list
|
|
image_num = eval_dataset.num_samples
|
|
eval_dataset.data_fields = {
|
|
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class', 'is_crowd'
|
|
}
|
|
eval_metric = COCOMetric(
|
|
coco_gt=copy.deepcopy(eval_dataset.coco_gt), classwise=False)
|
|
scores = collections.OrderedDict()
|
|
for image_info, i in zip(all_image_info,
|
|
trange(
|
|
image_num, desc="Inference Progress")):
|
|
im = cv2.imread(image_info["image"])
|
|
im_id = image_info["im_id"]
|
|
if conf_threshold is None and nms_iou_threshold is None:
|
|
result = model.predict(im)
|
|
else:
|
|
result = model.predict(im, conf_threshold, nms_iou_threshold)
|
|
pred = {
|
|
'bbox':
|
|
[[c] + [s] + b
|
|
for b, s, c in zip(result.boxes, result.scores, result.label_ids)
|
|
],
|
|
'bbox_num': len(result.boxes),
|
|
'im_id': im_id
|
|
}
|
|
eval_metric.update(im_id, pred)
|
|
eval_metric.accumulate()
|
|
eval_details = eval_metric.details
|
|
scores.update(eval_metric.get())
|
|
eval_metric.reset()
|
|
return scores
|