Files
FastDeploy/fastdeploy/vision/segmentation/ppseg/preprocessor.h
guxukai ed19c759df [CVCUDA] Add CV-CUDA support in PaddleSeg (#1761)
* add cvcuda support in ppseg

* python and pybind

* add resize op, remove concat,std::move

* define resize op
2023-04-09 10:38:18 +08:00

93 lines
3.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/manager.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace segmentation {
/*! @brief Preprocessor object for PaddleSeg serials model.
*/
class FASTDEPLOY_DECL PaddleSegPreprocessor : public ProcessorManager {
public:
/** \brief Create a preprocessor instance for PaddleSeg serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g ppliteseg/deploy.yaml
*/
explicit PaddleSegPreprocessor(const std::string& config_file);
/** \brief Implement the virtual function of ProcessorManager, Apply() is the
* body of Run(). Apply() contains the main logic of preprocessing, Run() is
* called by users to execute preprocessing
*
* \param[in] image_batch The input image batch
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
virtual bool Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs);
/// Get is_vertical_screen property of PP-HumanSeg model, default is false
bool GetIsVerticalScreen() const {
return is_vertical_screen_;
}
/// Set is_vertical_screen value, bool type required
void SetIsVerticalScreen(bool value) {
is_vertical_screen_ = value;
}
/// This function will disable normalize in preprocessing step.
void DisableNormalize();
/// This function will disable hwc2chw in preprocessing step.
void DisablePermute();
/// This function will set imgs_info_ in PaddleSegPreprocessor
void SetImgsInfo(
std::map<std::string, std::vector<std::array<int, 2>>>* imgs_info) {
imgs_info_ = imgs_info;
}
/// This function will get imgs_info_ in PaddleSegPreprocessor
std::map<std::string, std::vector<std::array<int, 2>>>* GetImgsInfo() {
return imgs_info_;
}
private:
virtual bool BuildPreprocessPipelineFromConfig();
std::vector<std::shared_ptr<Processor>> processors_;
std::string config_file_;
/** \brief For PP-HumanSeg model, set true if the input image is vertical image(height > width), default value is false
*/
bool is_vertical_screen_ = false;
// for recording the switch of hwc2chw
bool disable_permute_ = false;
// for recording the switch of normalize
bool disable_normalize_ = false;
bool is_contain_resize_op_ = false;
bool initialized_ = false;
std::map<std::string, std::vector<std::array<int, 2>>>* imgs_info_;
std::shared_ptr<Resize> pre_resize_op_ =
std::make_shared<Resize>(0, 0);
};
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy