Files
FastDeploy/fastdeploy/vision/segmentation/ppseg/ppseg_pybind.cc
guxukai ed19c759df [CVCUDA] Add CV-CUDA support in PaddleSeg (#1761)
* add cvcuda support in ppseg

* python and pybind

* add resize op, remove concat,std::move

* define resize op
2023-04-09 10:38:18 +08:00

131 lines
5.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPSeg(pybind11::module& m) {
pybind11::class_<vision::segmentation::PaddleSegPreprocessor,
vision::ProcessorManager>(m, "PaddleSegPreprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::segmentation::PaddleSegPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
// Record the shape of input images
std::map<std::string, std::vector<std::array<int, 2>>> imgs_info;
std::vector<FDTensor> outputs;
self.SetImgsInfo(&imgs_info);
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"PaddleSegPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, imgs_info);
;
})
.def("disable_normalize",
[](vision::segmentation::PaddleSegPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute",
[](vision::segmentation::PaddleSegPreprocessor& self) {
self.DisablePermute();
})
.def_property(
"is_vertical_screen",
&vision::segmentation::PaddleSegPreprocessor::GetIsVerticalScreen,
&vision::segmentation::PaddleSegPreprocessor::SetIsVerticalScreen);
pybind11::class_<vision::segmentation::PaddleSegModel, FastDeployModel>(
m, "PaddleSegModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone",
[](vision::segmentation::PaddleSegModel& self) {
return self.Clone();
})
.def("predict",
[](vision::segmentation::PaddleSegModel& self,
pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::SegmentationResult res;
self.Predict(&mat, &res);
return res;
})
.def("batch_predict",
[](vision::segmentation::PaddleSegModel& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::SegmentationResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly(
"preprocessor",
&vision::segmentation::PaddleSegModel::GetPreprocessor)
.def_property_readonly(
"postprocessor",
&vision::segmentation::PaddleSegModel::GetPostprocessor);
pybind11::class_<vision::segmentation::PaddleSegPostprocessor>(
m, "PaddleSegPostprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::segmentation::PaddleSegPostprocessor& self,
std::vector<FDTensor>& inputs,
const std::map<std::string, std::vector<std::array<int, 2>>>&
imgs_info) {
std::vector<vision::SegmentationResult> results;
if (!self.Run(inputs, &results, imgs_info)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleSegPostprocessor.");
}
return results;
})
.def("run",
[](vision::segmentation::PaddleSegPostprocessor& self,
std::vector<pybind11::array>& input_array,
const std::map<std::string, std::vector<std::array<int, 2>>>&
imgs_info) {
std::vector<vision::SegmentationResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, imgs_info)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleSegPostprocessor.");
}
return results;
})
.def_property(
"apply_softmax",
&vision::segmentation::PaddleSegPostprocessor::GetApplySoftmax,
&vision::segmentation::PaddleSegPostprocessor::SetApplySoftmax)
.def_property(
"store_score_map",
&vision::segmentation::PaddleSegPostprocessor::GetStoreScoreMap,
&vision::segmentation::PaddleSegPostprocessor::SetStoreScoreMap);
}
} // namespace fastdeploy