Files
FastDeploy/fastdeploy/rl/rollout_model.py
chen ec99474e71
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Test]add glm45_air logprob test and rollout model (#4175)
* add glm45_air logprob test

* add glm rollout model and pretrainedmodel for rl

* add glm rollout model and test

* check

* delete cudagraph in glm45

* add UT for glm rollout model

* revert glm UT
2025-09-23 21:06:07 +08:00

617 lines
23 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import copy
from typing import Dict
import paddle
from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.models.ernie4_5_moe import (
Ernie4_5_MoeForCausalLM,
Ernie4_5_MoePretrainedModel,
)
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import (
Ernie4_5_VLMoeForConditionalGeneration,
Ernie4_5_VLPretrainedModel,
)
from fastdeploy.model_executor.models.glm4_moe import (
Glm4MoeForCausalLM,
Glm4MoePretrainedModel,
)
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.model_executor.models.qwen2 import (
Qwen2ForCausalLM,
Qwen2PretrainedModel,
)
from fastdeploy.model_executor.models.qwen2_5_vl.qwen2_5_vl import (
Qwen2_5_VLForConditionalGeneration,
Qwen2_5_VLPretrainedModel,
)
from fastdeploy.model_executor.models.qwen3 import (
Qwen3ForCausalLM,
Qwen3PretrainedModel,
)
from fastdeploy.model_executor.models.qwen3moe import (
Qwen3MoeForCausalLM,
Qwen3MoePretrainedModel,
)
from fastdeploy.rl.rollout_config import RolloutModelConfig
class RolloutModel(nn.Layer):
"""Main model class for rollout operations, supports multimodal components for train."""
def __init__(self, rollout_model_config: RolloutModelConfig):
"""Initialize with FastDeploy configuration."""
super(RolloutModel, self).__init__()
self.fd_config = rollout_model_config.initialize()
self.rollout_model = self._init_model()
def _init_model(self) -> nn.Layer:
"""Load model from loader based on config."""
context = paddle.LazyGuard()
architectures = f"{self.fd_config.model_config.architectures[0]}RL"
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(self.fd_config)
model.eval()
return model
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Get parameter name mappings between rollout and training models."""
return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})(trainer_degree)
def get_quantization_infer_keys(self) -> Dict[str, str]:
"""Get parameter name mappings between rollout and training models."""
return getattr(self.rollout_model, "get_quantization_infer_keys", lambda: {})()
@paddle.no_grad()
def state_dict(self):
"""state_dict"""
return self.rollout_model.state_dict()
class BaseRLModel(nn.Layer):
"""Base class for RL models with common functionality"""
def __init__(
self,
):
super(BaseRLModel, self).__init__()
self.infer_to_train_mapping = {}
self.fd_config = None
self._mappings_built = False
@classmethod
def name(cls) -> str:
return cls.__name__
def _update_base_mappings(self, base_name: str) -> None:
"""Common static mappings"""
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight": f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight",
}
self.infer_to_train_mapping.update(static_mappings)
def _complete_missing_mappings(self) -> None:
"""
Complete the mapping dictionary with keys that have identical names in inference and training.
"""
for key in self.state_dict().keys():
if key not in self.infer_to_train_mapping and "_scale" not in key:
# Skip weight scale parameters in mapping. Train and infer have same key.
self.infer_to_train_mapping[key] = key
def get_quantization_infer_keys(self) -> list[str]:
"""Get quantization infer keys"""
quant_weight_key = []
if self.fd_config.quant_config.name() == "wint8":
"""RL only support weight_only_int8 now"""
for key in self.state_dict().keys():
if "scale" in key:
quant_weight_key.append(key.replace(".weight_scale", ".weight"))
else:
raise ValueError("Only 'wint8' quantization is supported in RL roullout.")
return quant_weight_key
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
"""
Ernie4_5_MoeForCausalLMRL
"""
_get_tensor_parallel_mappings = Ernie4_5_MoePretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Ernie4_5_MoeForCausalLMRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Ernie4_5_MoeForCausalLMRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Generate mapping between inference and training parameter for RL(do not delete!)."""
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("ernie")
base_name = "ernie.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight"
)
if self.fd_config.model_config.moe_use_aux_free:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.experts.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
# MoE experts mappings
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.experts.up_gate_proj_weight"
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.experts.down_proj_weight"
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
assert isinstance(self.fd_config.model_config.moe_layer_start_index, int)
# Process MoE layers
for layer_idx in range(
self.fd_config.model_config.moe_layer_start_index,
self.fd_config.model_config.num_hidden_layers,
):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration, BaseRLModel):
"""
Ernie4_5_VLMoeForConditionalGenerationRL
"""
_get_tensor_parallel_mappings = Ernie4_5_VLPretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Ernie4_5_VLMoeForConditionalGenerationRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Ernie4_5_VLMoeForConditionalGenerationRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Generate mapping between inference and training parameter for RL(do not delete!)."""
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("ernie")
base_name = "ernie.layers"
# Helper function to add layer mappings
def _add_expert_mappings(layer_idx: int, moe_tag: str, expert_start: int):
# MoE specific mappings
gate_suffix = "" if moe_tag == "text" else "_1"
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
)
if self.fd_config.model_config.moe_use_aux_free:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
# Initialize defaultdict for expert weights
from collections import defaultdict
from itertools import chain
def _generate_ranges(start, end, step=16, take=8):
"""生成 [start, start+take), [start+step, start+step+take), ... 直到 end"""
return chain(*(range(i, min(i + take, end)) for i in range(start, end, step))) # 防止越界
expert_mappings = defaultdict(list)
for expert_idx in _generate_ranges(
expert_start,
total_moe_num,
expert_num_per_rank * 2,
expert_num_per_rank,
):
for ph in place_holders:
expert_mappings[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.up_gate_proj_weight"
].append(f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}")
expert_mappings[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.down_proj_weight"
].append(f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}")
self.infer_to_train_mapping.update(expert_mappings)
moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
if isinstance(moe_layer_start_index, int):
text_moe_layer_start_index = moe_layer_start_index
image_moe_layer_start_index = moe_layer_start_index
else:
text_moe_layer_start_index = moe_layer_start_index[0]
image_moe_layer_start_index = moe_layer_start_index[1]
moe_layer_end_index = self.fd_config.model_config.moe_layer_end_index
if moe_layer_end_index is None:
text_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
image_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
elif isinstance(moe_layer_end_index, int):
text_moe_layer_end_index = moe_layer_end_index
image_moe_layer_end_index = moe_layer_end_index
else:
text_moe_layer_end_index = moe_layer_end_index[0]
image_moe_layer_end_index = moe_layer_end_index[1]
assert isinstance(self.fd_config.model_config.moe_num_experts, list)
total_moe_num = sum(self.fd_config.model_config.moe_num_experts)
if not trainer_degree:
trainer_degree = self.fd_config.parallel_config.tensor_parallel_size
expert_num_per_rank = self.fd_config.model_config.moe_num_experts[0] // trainer_degree
# Process MoE layers
for layer_idx in range(text_moe_layer_start_index, text_moe_layer_end_index):
_add_expert_mappings(layer_idx, "text", expert_start=0)
for layer_idx in range(image_moe_layer_start_index, image_moe_layer_end_index):
_add_expert_mappings(layer_idx, "image", expert_start=expert_num_per_rank)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen2ForCausalLMRL(Qwen2ForCausalLM, BaseRLModel):
"""
Qwen2ForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen2PretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen2ForCausalLMRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Qwen2ForCausalLMRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Generate mapping between inference and training parameter for RL(do not delete!)."""
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("qwen2")
base_name = "qwen2.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx):
# FFN mappings
for ph in place_holders:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = (
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
)
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
"""
Qwen3MoeForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen3MoePretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen3MoeForCausalLMRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Qwen3MoeForCausalLMRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Generate mapping between inference and training parameter for RL(do not delete!)."""
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("model")
self.infer_to_train_mapping = {}
base_name = "model.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight"
)
if self.fd_config.moe_config.moe_use_aux_free:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.experts.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
# MoE experts mappings
for expert_idx in range(self.fd_config.moe_config.num_experts):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.experts.up_gate_proj_weight"
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.experts.down_proj_weight"
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
# Process MoE layers
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen3ForCausalLMRL(Qwen3ForCausalLM, BaseRLModel):
"""
Qwen3ForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen3PretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen3ForCausalLMRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Qwen3ForCausalLMRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("model")
base_name = "model.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx):
# FFN mappings
for ph in place_holders:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = (
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
)
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen2_5_VLForConditionalGenerationRL(Qwen2_5_VLForConditionalGeneration, BaseRLModel):
"""
Qwen2_5_VLForConditionalGenerationRL
"""
_get_tensor_parallel_mappings = Qwen2_5_VLPretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Qwen2_5_VLForConditionalGenerationRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Qwen2_5_VLForConditionalGenerationRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("model")
base_name = "model.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx):
# FFN mappings
for ph in place_holders:
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = (
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
)
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Glm4MoeForCausalLMRL(Glm4MoeForCausalLM, BaseRLModel):
"""
Glm4MoeForCausalLMRL
"""
_get_tensor_parallel_mappings = Glm4MoePretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Glm4MoeForCausalLMRL, self).__init__(fd_config)
@classmethod
def name(self) -> str:
"""name"""
return "Glm4MoeForCausalLMRL"
def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
if self._mappings_built:
return self.infer_to_train_mapping
self.infer_to_train_mapping = {}
self._mappings_built = True
# Prepare placeholders
place_holders = ["weight"]
# Initialize mapping dictionary
self._update_base_mappings("model")
base_name = "model.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.weight"] = (
f"{base_name}.{layer_idx}.mlp.gate.weight"
)
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate.e_score_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.gate.e_score_correction_bias"
)
# MoE experts mappings
for expert_idx in range(self.fd_config.model_config.n_routed_experts):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.experts.up_gate_proj_weight"
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.experts.down_proj_weight"
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
# Process MoE layers
for layer_idx in range(
self.fd_config.model_config.first_k_dense_replace,
self.fd_config.model_config.num_hidden_layers,
):
_add_layer_mappings(layer_idx)
self._complete_missing_mappings()
infer_to_train_mapping_copy = copy.deepcopy(self.infer_to_train_mapping)
for key in infer_to_train_mapping_copy.keys():
if "mlp.experts.gate_correction_bias" in key:
self.infer_to_train_mapping.pop(key)
return self.infer_to_train_mapping