mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [feat] simplify configuration for pd-disaggregated deployment, and refactor post-init and usage for all ports * [fix] fix some bugs * [fix] fix rdma port for cache manager/messager * [fix] temporarily cancel port availability check to see if it can pass ci test * [feat] simplify args for multi api server * [fix] fix dp * [fix] fix port for xpu * [fix] add tests for ports post processing & fix ci * [test] fix test_multi_api_server * [fix] fix rdma_comm_ports args for multi_api_server * [fix] fix test_common_engine * [fix] fix test_cache_transfer_manager * [chore] automatically setting FD_ENABLE_MULTI_API_SERVER * [fix] avoid api server from creating engine_args twice * [fix] fix test_run_batch * [fix] fix test_metrics * [fix] fix splitwise connector init * [test] add test_rdma_transfer and test_expert_service * [fix] fix code syntax * [fix] fix test_rdma_transfer and build wheel with rdma script
137 lines
5.1 KiB
Python
137 lines
5.1 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import traceback
|
|
|
|
from fastdeploy.utils import get_logger
|
|
|
|
logger = get_logger("cache_messager", "cache_messager.log")
|
|
|
|
|
|
class RDMACommManager:
|
|
"""
|
|
RDMACommManager to manage rdma communication
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
splitwise_role,
|
|
rank,
|
|
gpu_id,
|
|
cache_k_ptr_list,
|
|
cache_v_ptr_list,
|
|
max_block_num,
|
|
block_bytes,
|
|
rdma_port,
|
|
prefill_tp_size,
|
|
prefill_tp_idx,
|
|
):
|
|
try:
|
|
import importlib
|
|
import os
|
|
import subprocess
|
|
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
if os.getenv("KVCACHE_GDRCOPY_FLUSH_ENABLE", "") == "" and current_platform.is_cuda():
|
|
command = ["nvidia-smi", "-i", "0", "--query-gpu=compute_cap", "--format=csv,noheader"]
|
|
result = subprocess.run(
|
|
command,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
check=False,
|
|
)
|
|
logger.info(f"nvidia-smi command: {command}")
|
|
logger.info(f"nvidia-smi output: {result.stdout}")
|
|
if result.returncode != 0:
|
|
raise RuntimeError(f"Failed to get compute capability via nvidia-smi: {result.stderr.strip()}")
|
|
|
|
major, minor = result.stdout.strip().split(".")
|
|
if major == "8": # for ampere arch
|
|
os.environ["KVCACHE_GDRCOPY_FLUSH_ENABLE"] = "1"
|
|
logger.info("Setting environment variable: export KVCACHE_GDRCOPY_FLUSH_ENABLE=1")
|
|
|
|
if os.getenv("KVCACHE_RDMA_NICS", "") == "" and current_platform.is_cuda():
|
|
res = importlib.resources.files("fastdeploy.cache_manager.transfer_factory") / "get_rdma_nics.sh"
|
|
get_rdma_nics = None
|
|
with importlib.resources.as_file(res) as path:
|
|
get_rdma_nics = str(path)
|
|
nic_type = current_platform.device_name
|
|
command = ["bash", get_rdma_nics, nic_type]
|
|
result = subprocess.run(
|
|
command,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
check=False,
|
|
)
|
|
logger.info(f"get_rdma_nics command: {command}")
|
|
logger.info(f"get_rdma_nics output: {result.stdout}")
|
|
if result.returncode != 0:
|
|
raise RuntimeError(f"Failed to execute script `get_rdma_nics.sh`: {result.stderr.strip()}")
|
|
|
|
env_name, env_value = result.stdout.strip().split("=")
|
|
assert env_name == "KVCACHE_RDMA_NICS"
|
|
os.environ[env_name] = env_value
|
|
logger.info(f"Setting environment variable: export {env_name}={env_value}")
|
|
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to initialize RDMA environment! {e} {traceback.format_exc()}")
|
|
|
|
try:
|
|
import rdma_comm
|
|
except ImportError:
|
|
raise RuntimeError(
|
|
"The installation of the RDMA library failed. Confirm whether your network card supports RDMA transmission."
|
|
)
|
|
|
|
self.messager = rdma_comm.RDMACommunicator(
|
|
splitwise_role,
|
|
gpu_id,
|
|
str(rdma_port) if splitwise_role == "decode" else "0",
|
|
cache_k_ptr_list,
|
|
cache_v_ptr_list,
|
|
max_block_num,
|
|
block_bytes,
|
|
prefill_tp_size,
|
|
prefill_tp_idx,
|
|
)
|
|
self.splitwise_role = splitwise_role
|
|
self.connected_rdma = set()
|
|
logger.info(
|
|
f"init rdma messager {gpu_id} {rdma_port}, prefill_tp_size: {prefill_tp_size}, prefill_tp_idx: {prefill_tp_idx}"
|
|
)
|
|
|
|
def connect(self, ip, port, tp_size=0):
|
|
"""
|
|
Connect to remote gpu and write cache.
|
|
"""
|
|
assert self.splitwise_role == "prefill", "only prefill can call this method"
|
|
ret = self.messager.is_connected(ip, str(port))
|
|
if ret:
|
|
return True
|
|
|
|
ret = self.messager.connect(ip, str(port), tp_size)
|
|
logger.info(f"connect to remote rdma address {ip}:{port} status is {ret}")
|
|
return ret == 0
|
|
|
|
def write_cache(self, ip, port, local_block_ids, remote_block_ids, layer_idx):
|
|
"""
|
|
Connect to remote gpu and write cache.
|
|
"""
|
|
return self.messager.write_cache(ip, str(port), local_block_ids, remote_block_ids, layer_idx)
|