Files
FastDeploy/fastdeploy/spec_decode/ngram.py
Jundong Liu 0b7a5778ab
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[Executor]CUDAGraph support Speculate Decode (#4258)
* [Executor]CUDAGraph support Speculate Decode

* fix problem

* solve problem

* fix

* fast compile

* CUDAGraph + mtp support eb5(only target model)

* Revert "fast compile"

This reverts commit 3cfe8373ed.

* fix precommit

* solve comment

* fix comment about #pragram unroll

---------

Co-authored-by: gongshaotian <gstain5555@outlook.com>
Co-authored-by: gongshaotian <gstian5555@outlook.com>
2025-10-13 15:21:41 +08:00

69 lines
2.3 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.ops.gpu import ngram_match
from .base import Proposer
class NgramProposer(Proposer):
"""
Proposer for Ngram match method.
Matching corresponding tokens in input and output as draft tokens.
"""
def __init__(self, fd_config: FDConfig):
super().__init__(fd_config)
self.max_ngram_size = self.speculative_config.max_ngram_size
self.input_ids_len = paddle.zeros(shape=[self.max_num_seqs, 1], dtype="int64").cpu()
def update(self, bid: int, seq_len: int):
"""
update
"""
self.input_ids_len[bid] = seq_len
def _run_impl(self, share_inputs):
"""
run
"""
draft_tokens = share_inputs["draft_tokens"].cpu()
seq_lens_this_time = share_inputs["seq_lens_this_time"].cpu()
seq_lens_encoder = share_inputs["seq_lens_encoder"].cpu()
seq_lens_decoder = share_inputs["seq_lens_decoder"].cpu()
ngram_match(
share_inputs["input_ids_cpu"],
self.input_ids_len.cpu(),
share_inputs["pre_ids"].cpu(),
share_inputs["step_idx"].cpu(),
share_inputs["actual_draft_token_num"].cpu(),
draft_tokens,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
share_inputs["max_dec_len"].cpu(),
self.max_ngram_size,
self.max_draft_token_num,
)
share_inputs["draft_tokens"][:] = draft_tokens.cuda()
share_inputs["seq_lens_encoder"][:] = seq_lens_encoder.cuda()
share_inputs["seq_lens_this_time"][:] = seq_lens_this_time.cuda()