mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 ca0de42d0b
			
		
	
	ca0de42d0b
	
	
	
		
			
			* * 新增scrfd rknpu2代码 * * 新增scrfd python代码 * 修正文档 * 修正文档以及部分错误 * 修改文档 * 修复部分错误 * 修复部分错误 * 修复部分错误 * scrfd更新代码 * scrfd更新代码
		
			
				
	
	
		
			205 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| 
 | ||
| from __future__ import absolute_import
 | ||
| import logging
 | ||
| from .... import FastDeployModel, ModelFormat
 | ||
| from .... import c_lib_wrap as C
 | ||
| 
 | ||
| 
 | ||
| class SCRFD(FastDeployModel):
 | ||
|     def __init__(self,
 | ||
|                  model_file,
 | ||
|                  params_file="",
 | ||
|                  runtime_option=None,
 | ||
|                  model_format=ModelFormat.ONNX):
 | ||
|         """Load a SCRFD model exported by SCRFD.
 | ||
| 
 | ||
|         :param model_file: (str)Path of model file, e.g ./scrfd.onnx
 | ||
|         :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
 | ||
|         :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
 | ||
|         :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
 | ||
|         """
 | ||
|         # 调用基函数进行backend_option的初始化
 | ||
|         # 初始化后的option保存在self._runtime_option
 | ||
|         super(SCRFD, self).__init__(runtime_option)
 | ||
| 
 | ||
|         self._model = C.vision.facedet.SCRFD(
 | ||
|             model_file, params_file, self._runtime_option, model_format)
 | ||
|         # 通过self.initialized判断整个模型的初始化是否成功
 | ||
|         assert self.initialized, "SCRFD initialize failed."
 | ||
| 
 | ||
|     def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3):
 | ||
|         """Detect the location and key points of human faces from an input image
 | ||
| 
 | ||
|         :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
 | ||
|         :param conf_threshold: confidence threashold for postprocessing, default is 0.7
 | ||
|         :param nms_iou_threshold: iou threashold for NMS, default is 0.3
 | ||
|         :return: FaceDetectionResult
 | ||
|         """
 | ||
|         return self._model.predict(input_image, conf_threshold,
 | ||
|                                    nms_iou_threshold)
 | ||
| 
 | ||
|     def disable_normalize_and_permute(self):
 | ||
|         """
 | ||
|         This function will disable normalize and hwc2chw in preprocessing step.
 | ||
|         """
 | ||
|         self._model.disable_normalize_and_permute()
 | ||
| 
 | ||
|     # 一些跟SCRFD模型有关的属性封装
 | ||
|     # 多数是预处理相关,可通过修改如model.size = [640, 640]改变预处理时resize的大小(前提是模型支持)
 | ||
|     @property
 | ||
|     def size(self):
 | ||
|         """
 | ||
|         Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
 | ||
|         """
 | ||
|         return self._model.size
 | ||
| 
 | ||
|     @property
 | ||
|     def padding_value(self):
 | ||
|         #  padding value, size should be the same as channels
 | ||
|         return self._model.padding_value
 | ||
| 
 | ||
|     @property
 | ||
|     def is_no_pad(self):
 | ||
|         # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size
 | ||
|         return self._model.is_no_pad
 | ||
| 
 | ||
|     @property
 | ||
|     def is_mini_pad(self):
 | ||
|         # only pad to the minimum rectange which height and width is times of stride
 | ||
|         return self._model.is_mini_pad
 | ||
| 
 | ||
|     @property
 | ||
|     def is_scale_up(self):
 | ||
|         # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0
 | ||
|         return self._model.is_scale_up
 | ||
| 
 | ||
|     @property
 | ||
|     def stride(self):
 | ||
|         # padding stride, for is_mini_pad
 | ||
|         return self._model.stride
 | ||
| 
 | ||
|     @property
 | ||
|     def downsample_strides(self):
 | ||
|         """
 | ||
|         Argument for image postprocessing step,
 | ||
|         downsample strides (namely, steps) for SCRFD to generate anchors,
 | ||
|         will take (8,16,32) as default values
 | ||
|         """
 | ||
|         return self._model.downsample_strides
 | ||
| 
 | ||
|     @property
 | ||
|     def landmarks_per_face(self):
 | ||
|         """
 | ||
|         Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
 | ||
|         """
 | ||
|         return self._model.landmarks_per_face
 | ||
| 
 | ||
|     @property
 | ||
|     def use_kps(self):
 | ||
|         """
 | ||
|         Argument for image postprocessing step,
 | ||
|         the outputs of onnx file with key points features or not, default true
 | ||
|         """
 | ||
|         return self._model.use_kps
 | ||
| 
 | ||
|     @property
 | ||
|     def max_nms(self):
 | ||
|         """
 | ||
|         Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
 | ||
|         """
 | ||
|         return self._model.max_nms
 | ||
| 
 | ||
|     @property
 | ||
|     def num_anchors(self):
 | ||
|         """
 | ||
|         Argument for image postprocessing step, anchor number of each stride, default 2
 | ||
|         """
 | ||
|         return self._model.num_anchors
 | ||
| 
 | ||
|     @size.setter
 | ||
|     def size(self, wh):
 | ||
|         assert isinstance(wh, (list, tuple)),\
 | ||
|             "The value to set `size` must be type of tuple or list."
 | ||
|         assert len(wh) == 2,\
 | ||
|             "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
 | ||
|             len(wh))
 | ||
|         self._model.size = wh
 | ||
| 
 | ||
|     @padding_value.setter
 | ||
|     def padding_value(self, value):
 | ||
|         assert isinstance(
 | ||
|             value,
 | ||
|             list), "The value to set `padding_value` must be type of list."
 | ||
|         self._model.padding_value = value
 | ||
| 
 | ||
|     @is_no_pad.setter
 | ||
|     def is_no_pad(self, value):
 | ||
|         assert isinstance(
 | ||
|             value, bool), "The value to set `is_no_pad` must be type of bool."
 | ||
|         self._model.is_no_pad = value
 | ||
| 
 | ||
|     @is_mini_pad.setter
 | ||
|     def is_mini_pad(self, value):
 | ||
|         assert isinstance(
 | ||
|             value,
 | ||
|             bool), "The value to set `is_mini_pad` must be type of bool."
 | ||
|         self._model.is_mini_pad = value
 | ||
| 
 | ||
|     @is_scale_up.setter
 | ||
|     def is_scale_up(self, value):
 | ||
|         assert isinstance(
 | ||
|             value,
 | ||
|             bool), "The value to set `is_scale_up` must be type of bool."
 | ||
|         self._model.is_scale_up = value
 | ||
| 
 | ||
|     @stride.setter
 | ||
|     def stride(self, value):
 | ||
|         assert isinstance(
 | ||
|             value, int), "The value to set `stride` must be type of int."
 | ||
|         self._model.stride = value
 | ||
| 
 | ||
|     @downsample_strides.setter
 | ||
|     def downsample_strides(self, value):
 | ||
|         assert isinstance(
 | ||
|             value,
 | ||
|             list), "The value to set `downsample_strides` must be type of list."
 | ||
|         self._model.downsample_strides = value
 | ||
| 
 | ||
|     @landmarks_per_face.setter
 | ||
|     def landmarks_per_face(self, value):
 | ||
|         assert isinstance(
 | ||
|             value,
 | ||
|             int), "The value to set `landmarks_per_face` must be type of int."
 | ||
|         self._model.landmarks_per_face = value
 | ||
| 
 | ||
|     @use_kps.setter
 | ||
|     def use_kps(self, value):
 | ||
|         assert isinstance(
 | ||
|             value, bool), "The value to set `use_kps` must be type of bool."
 | ||
|         self._model.use_kps = value
 | ||
| 
 | ||
|     @max_nms.setter
 | ||
|     def max_nms(self, value):
 | ||
|         assert isinstance(
 | ||
|             value, int), "The value to set `max_nms` must be type of int."
 | ||
|         self._model.max_nms = value
 | ||
| 
 | ||
|     @num_anchors.setter
 | ||
|     def num_anchors(self, value):
 | ||
|         assert isinstance(
 | ||
|             value, int), "The value to set `num_anchors` must be type of int."
 | ||
|         self._model.num_anchors = value
 |