mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 d14828cb18
			
		
	
	d14828cb18
	
	
	
		
			
			* add adaptivepool2d for tensorrt plugin * update code * update code * update code to fix bug
		
			
				
	
	
		
			206 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "adaptive_pool2d.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| nvinfer1::PluginFieldCollection AdaptivePool2dPluginCreator::mFC{};
 | |
| std::vector<nvinfer1::PluginField> AdaptivePool2dPluginCreator::mPluginAttributes;
 | |
| 
 | |
| pluginStatus_t AdaptivePool2dInference(cudaStream_t stream, int32_t n, const void* input, void* output);
 | |
| 
 | |
| AdaptivePool2d::AdaptivePool2d(std::vector<int32_t> output_size, std::string pooling_type) {
 | |
|   output_size_ = output_size;
 | |
|   pooling_type_ = pooling_type;
 | |
| }
 | |
| 
 | |
| AdaptivePool2d::AdaptivePool2d(const void* buffer, size_t length) {
 | |
|     const char *d = reinterpret_cast<const char*>(buffer), *a = d;
 | |
|     output_size_.resize(4);
 | |
|     for(int64_t i =0 ; i < 4; i++){
 | |
|       output_size_[i] =read<int32_t>(d);
 | |
|     }
 | |
|     if(read<int32_t>(d) == 0){
 | |
|       pooling_type_ = "avg";
 | |
|     }else{
 | |
|       pooling_type_ = "max";
 | |
|     }
 | |
|     FDASSERT(d == a + length, "deserialize failed.");
 | |
| }
 | |
| 
 | |
| int AdaptivePool2d::getNbOutputs() const noexcept {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| nvinfer1::DimsExprs AdaptivePool2d::getOutputDimensions(
 | |
|         int outputIndex, const nvinfer1::DimsExprs* inputs, 
 | |
|         int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept {
 | |
|   try {
 | |
|     nvinfer1::DimsExprs output(inputs[0]);
 | |
|     output.d[2] = exprBuilder.constant(static_cast<int32_t>(output_size_[2]));
 | |
|     output.d[3] = exprBuilder.constant(static_cast<int32_t>(output_size_[3]));
 | |
|     return output;
 | |
|   }
 | |
|   catch (const std::exception& e) {
 | |
|       FDASSERT(false, "getOutputDimensions failed: %s.",e.what());
 | |
|   }
 | |
|   return nvinfer1::DimsExprs{};
 | |
| }
 | |
| 
 | |
| int AdaptivePool2d::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, 
 | |
|                             const nvinfer1::PluginTensorDesc* outputDesc, 
 | |
|                             const void* const* inputs,
 | |
|                             void* const* outputs, 
 | |
|                             void* workspace, 
 | |
|                             cudaStream_t stream) noexcept {
 | |
|   if (inputDesc[0].type != nvinfer1::DataType::kFLOAT) {
 | |
|       return -1;
 | |
|   }
 | |
|   auto const* data = static_cast<float const*>(inputs[0]);
 | |
|   auto* result = static_cast<float*>(outputs[0]);
 | |
|   int nums = outputDesc[0].dims.d[0] * outputDesc[0].dims.d[1] * outputDesc[0].dims.d[2]* outputDesc[0].dims.d[3];
 | |
|   std::vector<int64_t> input_size, output_size;
 | |
|   for(int i =0; i< 4; i++){
 | |
|     input_size.push_back(inputDesc[0].dims.d[i]);
 | |
|     output_size.push_back(outputDesc[0].dims.d[i]);
 | |
|   }
 | |
|   CudaAdaptivePool(input_size, output_size, result, data, stream, pooling_type_);
 | |
|   return cudaPeekAtLastError();
 | |
| }
 | |
| 
 | |
| size_t AdaptivePool2d::getSerializationSize() const noexcept {
 | |
|   return 5 * sizeof(int32_t) ;
 | |
| }
 | |
| 
 | |
| void AdaptivePool2d::serialize(void* buffer) const noexcept { 
 | |
|   char *d = reinterpret_cast<char*>(buffer), *a = d;
 | |
|   for(int64_t i=0; i< 4; i++){
 | |
|     write(d, output_size_[i]);
 | |
|   }
 | |
|   int32_t pooling_type_val = 0;
 | |
|   if(pooling_type_ != "avg"){
 | |
|     pooling_type_val = 1;
 | |
|   }
 | |
|   write(d, pooling_type_val);
 | |
|   FDASSERT(d == a + getSerializationSize(), "d == a + getSerializationSize()");
 | |
| }
 | |
| 
 | |
| nvinfer1::DataType AdaptivePool2d::getOutputDataType(
 | |
|         int index, const nvinfer1::DataType* inputType, int nbInputs) const noexcept {
 | |
|   return inputType[0];
 | |
| }
 | |
| 
 | |
| bool AdaptivePool2d::supportsFormatCombination(
 | |
|     int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept {
 | |
|   return (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
 | |
| }
 | |
| 
 | |
| int AdaptivePool2d::initialize() noexcept {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void AdaptivePool2d::terminate() noexcept {
 | |
|   return;
 | |
| }
 | |
| 
 | |
| size_t AdaptivePool2d::getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, 
 | |
|                                         int nbInputs, 
 | |
|                                         const nvinfer1::PluginTensorDesc* outputs,
 | |
|                                         int nbOutputs) const noexcept {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| const char* AdaptivePool2d::getPluginType() const noexcept {
 | |
|   return "AdaptivePool2d";
 | |
| }
 | |
| 
 | |
| const char* AdaptivePool2d::getPluginVersion() const noexcept {
 | |
|   return "1";
 | |
| }
 | |
| 
 | |
| void AdaptivePool2d::destroy() noexcept {
 | |
|   return;
 | |
| }
 | |
| void AdaptivePool2d::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
 | |
|         const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept  {
 | |
|    return;
 | |
| }
 | |
| nvinfer1::IPluginV2DynamicExt* AdaptivePool2d::clone() const noexcept {
 | |
|   try{
 | |
|       nvinfer1::IPluginV2DynamicExt* plugin = new AdaptivePool2d(output_size_, pooling_type_);
 | |
|       plugin->setPluginNamespace(mNamespace.c_str());
 | |
|       return plugin;
 | |
|   }
 | |
|   catch (std::exception const& e){
 | |
|     FDASSERT(false, "clone failed: %s.",e.what());
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| AdaptivePool2dPluginCreator::AdaptivePool2dPluginCreator() {
 | |
|   mPluginAttributes.clear();
 | |
|   mPluginAttributes.emplace_back(nvinfer1::PluginField("output_size", nullptr, nvinfer1::PluginFieldType::kINT32, 4));
 | |
|   mPluginAttributes.emplace_back(nvinfer1::PluginField("pooling_type", nullptr, nvinfer1::PluginFieldType::kCHAR, 3));
 | |
| 
 | |
|   mFC.nbFields = mPluginAttributes.size();
 | |
|   mFC.fields = mPluginAttributes.data();
 | |
| }
 | |
| 
 | |
| const char* AdaptivePool2dPluginCreator::getPluginName() const noexcept {
 | |
|   return "AdaptivePool2d";
 | |
| }
 | |
| 
 | |
| const char* AdaptivePool2dPluginCreator::getPluginVersion() const noexcept {
 | |
|   return "1";
 | |
| }
 | |
| 
 | |
| const nvinfer1::PluginFieldCollection* AdaptivePool2dPluginCreator::getFieldNames() noexcept {
 | |
|   return &mFC;
 | |
| }
 | |
| 
 | |
| nvinfer1::IPluginV2DynamicExt* AdaptivePool2dPluginCreator::createPlugin(const char* name, 
 | |
|                                       const nvinfer1::PluginFieldCollection* fc) noexcept {
 | |
|   try{
 | |
|     const nvinfer1::PluginField* fields = fc->fields;
 | |
|     auto const dims = static_cast<int32_t const*>(fields[0].data);
 | |
|     output_size_.resize(4);
 | |
|     for(int64_t i = 0; i < 4; i++){
 | |
|       output_size_[i] = dims[i];
 | |
|     }
 | |
| 
 | |
|     const char* pooling_type_ptr = (static_cast<char const*>(fields[1].data));
 | |
|     std::string pooling_type(pooling_type_ptr, 3);
 | |
|     pooling_type_ = pooling_type;
 | |
|     return new AdaptivePool2d(output_size_, pooling_type_);
 | |
|   }
 | |
|   catch (std::exception const& e){
 | |
|     FDASSERT(false, "createPlugin failed: %s.",e.what());
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| nvinfer1::IPluginV2DynamicExt* AdaptivePool2dPluginCreator::deserializePlugin(const char* name, 
 | |
|                                             const void* serialData, 
 | |
|                                             size_t serialLength) noexcept {
 | |
|   try{
 | |
|     return new AdaptivePool2d(serialData, serialLength);
 | |
|   }
 | |
|   catch (std::exception const& e){
 | |
|     FDASSERT(false, "deserializePlugin failed: %s.",e.what());
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| } // namespace fastdeploy
 |