mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	 45865c8724
			
		
	
	45865c8724
	
	
	
		
			
			* [FlyCV] Bump up FlyCV -> official release 1.0.0 * XPU to KunlunXin * update * update model link * update doc * update device * update code * useless code Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			157 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| #ifdef WIN32
 | |
| const char sep = '\\';
 | |
| #else
 | |
| const char sep = '/';
 | |
| #endif
 | |
| 
 | |
| void CpuInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseCpu();
 | |
|   auto model = fastdeploy::vision::detection::PicoDet(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseKunlunXin();
 | |
|   auto model = fastdeploy::vision::detection::PicoDet(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void GpuInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
| 
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   auto model = fastdeploy::vision::detection::PicoDet(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void TrtInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
| 
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UseTrtBackend();
 | |
|   auto model = fastdeploy::vision::detection::PicoDet(model_file, params_file,
 | |
|                                                       config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout
 | |
|         << "Usage: infer_demo path/to/model_dir path/to/image run_option, "
 | |
|            "e.g ./infer_model ./picodet_model_dir ./test.jpeg 0"
 | |
|         << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with gpu and use tensorrt backend; 3: run with kunlunxin."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   if (std::atoi(argv[3]) == 0) {
 | |
|     CpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 2) {
 | |
|     TrtInfer(argv[1], argv[2]);
 | |
|   }  else if (std::atoi(argv[3]) == 3) {
 | |
|     KunlunXinInfer(argv[1], argv[2]);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |